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OBJECTIVE

STUDY OF THE TRANSITION TO THE SPON-
TANEOUS ENHANCED CONFINEMENT REGIME
IN THE RFP

OUTLINE

e Spontaneous Enhanced Confinement Regime

in RFP
e Tearing Mode Stability with Shear Flow

e Reynolds Stress and Shear Flow (Generation
due to Tearing Modes

e Transition Modeling



Spontaneous Enhanced Confinement
Regimes in RFP

Regimes of enhanced confinement in the
Madison Symmetric Torus RFP can occur
spontaneously, following sawtooth crashes.

These discharges are characterized by:

- reduced electrostatic and global magnetic fluc-
tuations, leading to improved 7, and 7p;

- a strong flow shear just outside the reversal
radius.

e Additional experimental observations:

— Transition occurs during sawtooth crash;

— The generated flow 1s domimantly toroidal;

— Plasma rotation slows during crash, start-
ing first in core, then moving toward edge.

— [ncrease of V' /. 1n the region of strong
shear (transport barrier).



e Transition Physics:
We postulate that:

— The shear flow 1s generated by
during the excitement of
global (m = 1, low n) and local (m = 1,
high n and m = 0) ws-tearing modes in a
sawtooth crash
— After the crash, as the Reynolds stress de-

cays, the edge flow i1s maintained by the
created by the

suppression of turbulence



A more detailed dynamaics ...

e m =1, n =6—8 core tearing modes (with w, ~ 0 since VP =~ ();
Re(Bnk B¢7_k> = () (fluctuations out of phase).

e Small amplitude m = 1. high-n propagating w,-tearing modes
closer to the reversal layer; Re<Br7k B¢7_k> ~ () (small fluctuation
amplitudes).

e Plasma tends to rotate toroidally almost rigidly (the torque due to
the coupling between core and edge modes slows down core modes).

e No edge rotation induced by Reynolds stress.

e Sawtooth crash induced m = 1. low-n core tearing mode nonlinearly
excite m = 1. high-n and m = 0 w,-tearing modes near the reversal
radius; large Re(Br B¢> — (V) (via ion momentum balance).

o (V,;) — (FE,) (via Ohm’s law).

o (E) — (V) (viaE x D).

e The high-n. w,-tearing modes near the reversal radius lose energy.
and Re(B, By) =~ 0;

e Crash-generated (Vg ) suppresses edge turbulence and steepens
V P, which now maintains the toroidal flow (via momentum balance
and Ohm’s law).

e A'isreduced by both crash-generated (Vg p) and lower resistivity.
e Toroidal ion flow is slowly restored to pre-crash state by nonlinear
torques.



Tearing Mode Stability with Shear
Flow

e Ideal MHD System

V.-B=0, V-V=0
AY

pg+(V-V)V +Vp—-—JIxB=0, E=-VxB.
B
o =V x B, %—t:—VxE.

e In cylindrical geometry and assuming the following fields
B(r,0.t) = [B@(T‘)é + Bz(fr)i] + B (r)ei(mo+ks+en)
V(r.0.t) = [Vb(?‘)é + VZ(T)Z] + \Nf(r)ei(mﬁ—l—kz—l—wt)

a second order o.d.e. for B,(r) is obtained:

d*B dB -
T2(T> + C'(7r) rl7) + D(r) By(r)=0.
dr dr
This equation governs in the

presence of an



e The coeflicients €', D depend on the following
quantities:

C(r),D(r) xw; k, m; F, G, €, 52

where
G(r)=k-Vj F(r)=k-By

Qr) =w+G(r) S(r)* = ppoG(r)” = F(r)’

e [ield and velocity equilibrium profiles for the REFP
[polynomial function model J. C. Sprott, Phys. Fluids 31 (8),
p.2266, (1988)

e The outer region equation is solved numerically
with w = —G(r4ng) to evaluate A
1 dBo™ 1 dBo™

A = |- — —
Bout - dr Bout - dr

r—0t r—0"



Field and Velocity Equilibrium Profiles

BOz, BOy, gsaf, (1/5) *FO

By(r). . ¢(r) and F(r) equilibrium profiles (PFM). Mode rational surface
for the m =1, n = —7 mode is at ry = 0.204 m, while the reversal radius is

at 7s = 0.424 m. Units are MKSA. [F has been divided by 5 to fit the figure.]

VOt h, OVD, SI&Z0, FO [a. u.]

V(r) (parabolic). Q(r). F(r) and profiles.



Shear Flow 1s Stabilizing

Br _out

Perturbed . the maximum of the
parabolic velocity profile centered at the reversal radius, ¥s = 0.42 m.

Stability Curve

for the
parabolic Vy = (V2 + Vf)l/2 profile study. The flow is centered at r = 7.
[Here, rs and 74 are such that F(ry) =0 and ¢(7s) = 0, AV} is the width of
the velocity profile. a is the minor radius and Vj is the Alfvén velocity].



Br_out

3. 39ple-08 +

g | |
0.204131 0.204141 0.204151
r

Perturbed B, (r) eigenfunctions for no shear flow (- - -) and maximum shear
flow () around the singular surface at r; = 0.204 m. The stabilizing
change in slope is apparent.
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Reynolds Stress and Shear Flow
Generation due to Tearing Modes

e Velocity and Magnetic Reynolds Stress (quasi-
linear)

R(V,V.) =R [ﬂgé i

Bd

. R(B.B.) =R {k

o Flux surface averaged 1on momentum bal-
ance

viscous damping torques

—_—— 1
V¢ l> - N<V¢,i> _M7R (Fin + Fex)

Reynolds stress drive

0
8t<

e Flux surface averaged equation for shear flow
(ng,i = qub)i/da:)
Magnetic Reynolds stress drive
10

A T
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e Coupled equations for the radial displacement
¢, and perturbed magnetic field B; (slab geom-

etry)

d?¢.(x)  k By k By - .

I = CZQLS,O”Y:U o(x) . r &p(x) + 1By ()
d°B..(x k By - -

d;( ) _ _47Tﬂl2 o(@) |7 &alw) +iBa()

e The adopted conductivity model describes the
electron response to diamagnetic and shear flow
effects:

o(x) = OSpitzerOO(le — x|
where og(w) = (w —§23)/w, 25 = w; + 1.71w7,
and

~ L7lwhkV!
Cw(w— Q¥

<1

e Perturbation expansions in

3 3 3 "
§x =8+ 001+ 00782 -
w = wy + ng
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o We obtain (1) oc By)

SN

R T I
0 - —_
O[(507 ) ] 72 ﬁ/()&)(x) ,3/0 ¢0(f’3)
d*)y(2 - -
WIE)  amdudn(#) = amiod b
T
A PE(H 42 . -3 29
Ol(do, &) T — T8 = T (@)= o) - il
. & 0 0 0 0
2 (4 ) ) . )
;D;gx) — A () =4m302& () — A0 Eo(2) — Ao dedo(z)
etc...
o 0™ order: classical . driven by
A/'
o 1% order: localized . driven by

electron dynamics.

e To solve these equations we use a
approach and an
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Velocity and Magnetic Reynolds Stress
(Generation

RSTRESSVOvVvsX

44444

Velocity Reynolds stress (Oth order).

RSTRESSBOvVvsX

Magnetic Reynolds stress (0th order).
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Flow Acceleration due to Reynolds Stress

MERWOV s TERMBO

1g+11
2 / 2
‘ s o P ‘

Comparison of the two driving terms associated with the

Oth order Reynolds stresses [i.e., =0/ Or(V,oVy0) and
+0/0r|(BroBy.o)/ (4mpm)]].
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Transition Modeling

e Relevant equations:

o Flux surface averaged ¢-component of ion mo-
mentum balance

0 1 - .
(9 ~ ~ Bf]" ng
B A VA VRN
8T< T, ¢,Z> < 47T,0m >
o The r-component of Ohm’s law
m; dP
= —(V,.) B !
(Vi) Boo+ o dr
o E x B toroidal drift velocity

By
Vi) =
< Qb,?/) B%
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e Modeling system to describe the (second order)
transition near the reversal radius:

1oy 1/2 0°B
2ot “1/V+OW Or?
Vl 2 O N -
- Fex B,r, AV Fin B’rv AV
- M ROr [ ( )+ Ll >]
1
5o = twB-oas B —a VB
O(AV/R AV - ;
( / ) = —lly —— -+ FeX(B'ra AV) + Fin(B'l“a AV)
ot R
where
V= (V)
AV = ‘/Core — ‘/edg'e
B, B
B= ()
T Pm

e The first two equations describes the
. while the
last equation describes the

(mode deceleration occurs when the
electromagnetic torques exceed the inertia and
viscous forces).
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Terms on the right hand sides of the equations:

e —u; V : frictional damping due to neoclassical and
impurity effects (magnetic pumping):

o +a V2 %i? . source due to magnetic Reynolds stress
(m = 1, high n and m = 0: local modes):

1/2 M . .
° —K4 7 % (M + Fex): drive terms from nonlinear internal

e.m. torques and external em. torques (m = 1, low n:
global modes);

e +7vy B : nonlincar feeding from the increase of core
modes due to sawtooth crashes, with growth rate vy o

2
Bm:17
e —a3 B%: nonlinear damping:
e —qay V B : shear suppression of magnetic turbulence;

e —us AV/R : viscous tendency to rigid rotation (R=
major radius).
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Summary ...

e We are working on a model which describes the

observed in the Madison Symmetric
Torus reversed-field pinch.

e Our model 1s based on the interplay between
the

~and the
1tself.

o We study the generation of shear flow by Reynolds
stress by solving perturbatively the tearing
mode equations in the resistive layer.

o We study the influence of shear flow on the
mode stability by considering the ideal MHD
system 1n cylindrical geometry with an equi-
librium flow.
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o We present three coupled equations which de-
scribe the dynamics of the spontaneous enhanced
confinement regime in the RFP.

. and Future Work

o We will perform a bifurcation analysis of the
model.

o Need to complete the shear flow generation
calculation;

o Need to find a simple relation which describes
the nonlinear excitation of edge modes due to
core modes.

A copy of this poster will be soon available
for downloading at
“hitp://sprott.physics.wisc.edu/theory/home.htm”

21



