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PART 1

MOTIVATIONS AND GOAL

Shear flow in high-confinement
discharges

e [ x DB shear flow seems to be a universal
feature of improved confinement regimes in mag-
netically confined plasmas

e Tokamak

o Fluctuations are predominantly electrostatic
and of short wavelength

o Shear flow suppresses turbulence and reduces
transport [H. Biglari, P. H. Diamond and P. W. Terry, Phys.
Fluids, 3, 1, (1990)]

e Reversed-field pinch

o Fluctuations are predominantly magnetic
and global

o The spontaneous enhanced confinement regime
observed in the Madison Symmetric Torus (MST)
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1s characterized by a self-induced FE, which cre-
ates a region of strong shear flow (V, = ETBZ/B(%)
near the edge of the plasma [Chapman. et al.. Phys.
Plasmas 5, p.1848, (1998)]

o Both local electrostatic and global mag-
netic fluctuations are reduced

(Goal

o Perform A’ calculations with a region of shear
flow localized away from the rational surface =
study the effect of a localized region of shear
flow on the stability of tearing modes in the
reversed-field pinch

e Main conclusion: A region of shear flow local-
1zed at the edge of the reversed-field pinch plasma
further destabilizes core m = 1 global tearing
modes.



PART 1

STABILITY OF TEARING MODES

Ideal Kink Equation

e I[ncompressible ideal MHD system

p = const. | V.- V=0, V-B=0,

oV
ﬂg‘F(V'V)V—va—JXB:O, E:—VXB,
0B
,LL()J:VXB, EZ—VXE

e In cylindrical geometry, and assuming

equilibrium perturbation

B(r,0,t) = [Bg(?“)é + BZ(T)Q] + B(r) exp[i(mb + kz + wt)]

V(r,0,t) = [Va(r)6 + V.(r)2| + V(r) expli(m+kz+wt)]

we obtain a second order o.d.e. for B,(r):

A’ By (1) d By (1)
dr? dr

+ C(r;w) + D(r;w) Br(r)=0.



e Defining:
Vi=Vi+V?, B*=DBj+B:.

dF )
dr

G=k-V, F=k-B
Q=w+CG, ZQIMOIOQQ—FQ,
3 22
2 2.2
Mpg=pm”+q kzr”, H:_M11F2
m M11F2 k2 2
(p, q are positive mtegers)? the coeflicients read
1 dH 1 d
=g DO =g =i
where
g(r) = —m2r2_1
1R |l_F_22“ dp gy 2{rszz — mBy 2(—~FF/X?) — 1}}]]
F2r | 227y M,
+ ;4“07?5% (ViF — 2B,Q)

3y2 dr dr

2 a0 v, (M Vo
+ SRR (0= 2w ) + T8 (T4 - )] + v (072 - 2



Stability parameter

e The outer region equation is solved numerically
in the w = 0 approximation to evaluate A’ (z =
r—Ts):

~

dB,
dx

dB,
dx

1

A=
B (0)

r—07T r—0~

o Procedure 1s conventional: matching of the
numerical solution in the ideal outer region with
the series solution near the rational surface.



PART III

STABILITY CONSIDERATION

Potential energy

e New dependent variable

r(1— 142
i br

w —
where
is the U =

V(r) — V(rg), where rg is the location of the
rational surface, and V 4 = B/(Mop)l/z]



e Ideal kink equation recast as [K? = m?2/r2 + k]

rdr (ch?f) — U =K%

e The “potential energy” U is

1 1 MgldF+d2F +m( — 2k3r?)
F\rMy dr — dr? M3, r?

k?
+ — {QILL

(dp/dr)
r 7

L )

) r?fiﬁfipfz ) {02— (V- ) (dd: o )]
1 d? (dY7/dr) Mz 1 dF?|d
21— ){er {2(1— )+T‘M11 F? dr] dr} '




Stabilization conditions

e Multiplying by . applying the operators
lime_g/p°~ “dr and lime_yq I 4edr and adding
the two resulting equations we obtain

] e 2

re N = — [/S’dr r

Vs s
U )
—[odr r (Uy + Uy) (i)

where g = 1(rg) and
fodr = limy (5 Cdr + 2 e dr)

o [/)is the of the potential

U0:_1+1(M31dF+d2F>+m( — 2k*r?)
r2 - F\rMp dr = dr? M r?

k[, dp
’I”FQ{ K0 ar

2F
rk,B. — mBy|—
My, ’ (

2k, rk,.Byp — (m/r)B, N 2M 1 By .
m F mrF
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o Ui =U — Upis the remaining part of the
potential

e [/ can be conveniently divided into two con-
tributions,

Ui(r) =U;1+Up 2,

where

_— (1dF+ My} 1 d
b1 = Fdr 2rMy (1 — ) dr

1 A2\ 1 2
)2

4(1 — dr 20 — 17) dr?
22 dp 2rk,By(k,Bp— (m/r)B,
Uy = TFZQ{MOdr—I_ o ]\21 (m/7)B:)
By 1)
o (1=17)
2 2By
(1 - >( P
1 (d)? m 1
- Z[alr 4m HOP (1—
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e The flow contribution to A\’ is

= [pdr r (if Uy

o Global condition: the flow is stabilizing/
destabilizing iof T is greater/less than 0

o Local condition: the flow is locally stabi-
lizing/destabilizing iof Uy is positive /negative

e Comment: 7 depends on U and the weight-
ing function 7(1/1s)?, thus a knowledge of the
eigenfunction B, is needed in order to calculate

. However, since the weighting function is pos-
itive definite, consideration of the “potential en-
ergy” U; alone (which depends only on equilib-
rium profiles) can give trend information on the
influence of the flow on the stability of the mode,

without the need of numerical calculations.
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PART 1V

NUMERICAL RESULTS

e We study the stability of an m =1, n = —7
tearing mode in the core of a RF'P in the presence
of a region of axial shear flow localized in the
outer part of the plasma.

triangular
5 parbolc rectangular
9 o 3
Q' linearly decreasing .
t. N\ Y 3
B O\ < linearly increasing
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C | \ B
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i
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; N
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0.18m 052m
region with flow
: V > 0 :

V. (r) flow profiles used in the simulations
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Reference configuration: A’ = +0.485

e The equilibrium profiles have been constructed
from experimental data of a spontaneous enhanced
confinement regime in MST
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Rectangular flow:

Vz,ma,;z: = 0.3 VA7 (Vz,ma:v/LV>/(VA/CL> =1.95
AN = +0.701

e B,(r) (compared to the no flow case):
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o Integrand in 7 [ie., r Uy [th/1(rs)]?, with

)

Y evaluated using the reference (no flow) eigen-
function:

Integrand [1/m]

35 - : : ;
0.425 0.445 0.465 0.485 0.505

r [m]

Ui(r) < 0,7 <0: flow increases £\,
consistent with numerical result.
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Linearly decreasing and increasing flows:

Vemaz = 0.6 Vg, (Vzmaz/Ly)/(V4/a) =3.90
A = +1.487 and A/ = 0.911

o B,(r)’s (compared with no flow case):
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o Integrand in 7 [ie., r Uy [th/1(rs)]?, with

)

Y evaluated using the reference (no flow) eigen-
function:

0 - T I ——— —

-50 -

Integrand [1/m]

~100 - lin. decr.

-150 - : : ‘ -
0.425 0.445 0.465 0.485 0.505

r[m]

Ui(r) < 0,7 <0: flow increases A\,
consistent with numerical result.

Also, 7 more negative for linearly decreasing
flow, so that A\’ greater than for linearly
increasing flow, consistent with numerical result.
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Triangular flow:

Vmaz = 0.6 Vo, (Vamaz/Ly)/(Va/a) = 3.90
A = +0.913

o By(r) (compared with no flow case):
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Parabolic flow:

Vmaz = 0.6 Vo, (Vamaz/Ly)/(Va/a) = 3.90
A = +1.736

e B,(r) (compared with no flow case):
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o Weighting function r [1//1(rs)]? in the inte-
oral 7, with 1 evaluated using the reference (no
flow) eigenfunction:
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o Integrand in 7 [i.e., r Uy [0/1(rs)]?, with
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Cusp flow:

Vmaz = 0.6 Vo, (Vamaz/Ly)/(Va/a) = 3.90
A = +0.711

e B,(r) (compared to no flow case):
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Flow profile narrower than parabolic case =
smaller increase in A\,
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Flow location study (triangular flow)

e Stability factor vs central flow location:
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The localized triangular flow profile is more
destabilizing the closer 1t 1s to the rational
surface of the mode.
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PART VI

CONCLUSIONS

e We have investigated numerically the influence
on the stability of m = 1 core tearing modes in
the reversed-field pinch of a region of axial shear
flow localized away from the rational surface

o Jet-like flow profiles localized in the outer re-
olon of the plasma all further destabilize m =1
modes

e Theincrease in A’ is of order (V; maz/Ly)/(V4/a)
(Ly = width of flow region)

e Numerical results agree with analytical predic-
tions based on a “pseudo-potential energy” for
the plasma
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Discussion

e Reduction of magnetic turbulence observed in
the spontaneous enhanced confinement regime

in the MST RFP 1s not due to flow shear sta-

bilization of m = 1 modes

e Reduction of magnetic turbulence in improved
REFP regimes could be due to:

—m = 0 stabilization: flow shear is present in
both outer and inner layer. Shear flow in-
side the inner layer i1s known to be stabiliz-
ing for large enough shear [Chen and Morrison.
Phys. Fluids B 2, 3. p.495. (1990)]

— indirect effects (e.g., change in current pro-
file due to a reduction of edge resistivity,
induced by shear flow stabilization of edge
electrostatic modes)

25



FUTURE WORK

e Consider the effect on m = 1 modes of other
flow profiles:

— tanh(r) and exp(r) flow profiles

— flow profiles consistent with those induced
by magnetic Reynolds stress at the m = 0
location

e Investigate the influence on the m = 0 mode
of a region of shear flow localized on either sides
of the rational surface

This poster will be soon available at:
http://sprott.physics.wisc.edu/theory/home.htm

26



