
* Post Man. 2	244	104ex1

Physics 104 Exam 1			February 20, 200
Name_DEL		ID #	
Section #	TA Name		·

Fill in your name, student ID # (not your social security #), and section # (under ABC of special codes) on the Scantron sheet. Fill in the letters given for the first 5 questions on the Scantron sheet. These letters determine which version of the test you took, and it is very important to get this right. Make sure your exam has questions 6—25.

- 1. C
- 2. B
- 3. D
- 4. A
- 5. E
- 6. What is the direction of the electric field at the surface of a negatively charged conductor?
 - a. tangent to the surface
 - b. at a 45° angle to the surface
 - c. perpendicular outward and away from the charge
 - d. none of the above; the electric field is zero
 - perpendicular inward toward the charge
- 7. The units of electric field are

- 8. Two identical balls in free space have the same amount of charge, but the charge on ball A is positive and the charge on ball B is negative. Which one of the following is true?
 - a. They will move toward one another. OPPOSITE CHAGES ATMAGE
 b. Since the force on A is equal but opposite to the force on B, they will not move.
 - c. They will move with constant acceleration. (NO, FORCE INCAGISCS AF
 - d. Since the force on both balls is negative they will move in the negative costs direction.
 - e. The will move away from one another.
- 9. An oil drop of radius 1.6×10^{-4} cm with a charge equivalent to one electron is suspended in an electric field such that the electric force just balances the gravitational force on the drop. What is the magnitude of the electric field? (The density of oil is 0.85 g/cm^3 , and $e = 1.6 \times 10^{-19} \text{ C.}$)

a.
$$1.1 \times 10^{5} \text{ V/m}$$

b. $8.9 \times 10^{5} \text{ V/m}$

c. $2.2 \times 10^{5} \text{ V/m}$

d. $4.5 \times 10^{5} \text{ V/m}$

e. zero

 $Q = 0.85 \text{ g/cm}^{2} = 8.5 \times 10^{-2} \text{ M}^{2} = 850 \text{ kg/M}^{2}$

Fig. across social charges each $+0$ are approved by some distance. What third charges

10. Two equal charges, each +Q, are separated by some distance. What third charge would need to be placed half way between the two charges so that the net force on each charge would be zero?

- 11. Increasing the separation of the two charged parallel plates of a capacitor, which are disconnected from a battery, will produce what effect on the capacitor?
 - a. increase charge
 - b. decrease charge
 - c. increase capacitance
 - d. decrease voltage
 - e. decrease capacitance

12. Find the electrical potential 15 cm from a point charge of 3.0 μ C. ($k = 8.99 \times 10^9$ $N \cdot m^2/C^2$

a.
$$2.7 \times 10^4 \text{ V}$$

b. $1.2 \times 10^6 \text{ V}$
c. $6.0 \times 10^6 \text{ V}$
d. $3.6 \times 10^5 \text{ V}$
e. $1.8 \times 10^5 \text{ V}$

13. Two capacitors with capacitances of 1.0 and 0.50 μ F, respectively, are connected in series. The system is connected to a 100-V battery. What electrical potential energy is stored in the 1.0- μ F capacitor?

a.
$$0.065 \times 10^{-3} \, \text{J}$$

b. $4.3 \times 10^{-3} \, \text{J}$
c. $0.80 \times 10^{-3} \, \text{J}$
d) $5.6 \times 10^{-4} \, \text{J}$
e. $5.0 \times 10^{-3} \, \text{J}$

14. In which case does an electric field do positive work on a charged particle?

a negative charge moves opposite to the direction of the electric field.

b. a positive charge is moved to a point of higher potential energy.

b. a positive charge is moved to a point of higher potential energy.

c. a positive charge completes one circular path around a stationary positive \(\frac{1}{3} \text{ (3 \text{ (3 \text{ (4 \text{ (3 \text{ (4 \text{ (3 \text{ (4 \te charge. NO WONK

- word → d. a negative charge is moved to a point of higher potential energy.

- www → e. a negative charge moves in the direction of the electric field

15. What is the equivalent capacitance of the combination shown?

a.
$$29 \, \mu F$$
b. $40 \, \mu F$
c. $25 \, \mu F$
d. $15 \, \mu F$
e. $10 \, \mu F$
 $12 \,$

16. If a metallic wire of cross sectional area 3.0×10^{-6} m² carries a current of 6.0 A and has a mobile charge density of 4.24×10^{28} carriers/m³, what is the average drift velocity of the mobile charge carriers? (charge = 1.6×10^{-19} C)

a.
$$3.4 \times 10^{3} \text{ m/s}$$

b. $1.7 \times 10^{3} \text{ m/s}$
c. $1.5 \times 10^{-4} \text{ m/s}$
d. $2.9 \times 10^{-4} \text{ m/s}$
e. $3.4 \times 10^{-4} \text{ m/s}$
 $V_{1} = 2.9 \times 10^{-4}$
 $V_{2} = 2.9 \times 10^{-4}$

17. The current in an electron beam in a cathode-ray tube is 70 μ A. How many electrons hit the screen in 5.0 s? ($e = 1.6 \times 10^{-19}$ C) 70 μ A = 70 μ C /N / Sr

a.
$$2.2 \times 10^{11}$$
 electrons
b. 8.8×10^{13} electrons
c. 8.8×10^{18} electrons
d) 2.2×10^{15} electrons
e. 2.2×10^{18} electrons
e. 2.2×10^{18} electrons

18. A certain material is in a room at 27°C. If the absolute temperature (K) of the material is tripled, its resistance doubles. (Water freezes at 273 K.) What is the value for α , the temperature coefficient of resistivity?

alue for
$$\alpha$$
, the temperature coefficient of resistivity?

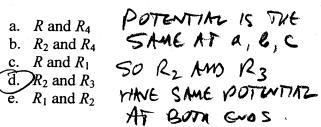
27°C > 27+273 = 300 K MINCED IS

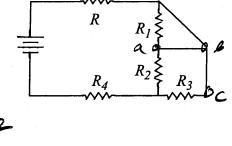
4.0.0017°C

6.1°C

6

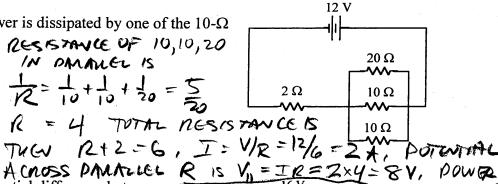
- 19. A water pump draws about 3.8 A when connected to 240 V. What is the cost (with electrical energy at 9 cents per kWh) of running the pump for 5 h?
 - a. 8.0 cents
 b. 15 cents
 c. 82 cents
 d. 95 cents $0.912 \text{ kW} \times 5 \text{ h} = 4.57 \text{ kWh}$ $4.56 \times 59 = 50.41$


20. An electric car is designed to run off a bank of 12-V batteries with a total energy storage of 6.0×10^7 J. If the electric motor consumes 6 kW in moving the car at a steady speed of 10 m/s, how far will the car go before it is "out of juice?"


a.
$$\frac{25 \text{ km}}{\text{b.}}$$
 $\frac{6 \text{ hW}}{100 \text{ km}}$ $\frac{6 \times 10^{7} \text{ J}}{6 \times 10^{3}} = 10^{4} \text{ S}$
e. $\frac{25 \text{ km}}{150 \text{ km}}$ $\frac{6 \times 10^{7} \text{ J}}{6 \times 10^{3} \text{ J/s}} = 10^{4} \text{ S}$
e. $\frac{25 \text{ km}}{150 \text{ km}}$ $\frac{6 \times 10^{7} \text{ J}}{6 \times 10^{3} \text{ J/s}} = 10^{4} \text{ S}$
e. $\frac{25 \text{ km}}{100 \text{ km}}$ $\frac{6 \times 10^{7} \text{ J}}{6 \times 10^{3} \text{ J/s}} = 10^{4} \text{ S}$

21. Three resistors, with values of 2.0, 4.0 and 8.0 Ω , respectively, are connected in parallel. What is the equivalent resistance of this combination?

a.
$$0.58\Omega$$
 R IN PMARLER $\Rightarrow \frac{1}{R} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8}$
b. 7.0Ω
c. 1.1Ω
d. 14.0Ω $r = \frac{4}{8} + \frac{2}{8} + \frac{1}{8} = \frac{7}{8}$ $R = \frac{8}{7}$
e. 4.57Ω

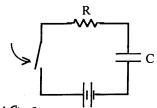

22. Which two resistors are in parallel with each other?

23. How much power is dissipated by one of the $10-\Omega$ resistors? RESISTANCE OF 10,10,20

IN PARALER IS 元= 10+10+20=5 (c) 6.4 W R = 4 TOTAL NESISTANCES

24. What is the potential difference between points \underline{a} and \underline{b} ? $\underline{I}_2 = \overline{I}_1 + \underline{I}_2$ (SUNCTION)

TOP LOOP CLOCKWISE! +16 +4],+12]2-18=0b b. 6 V


c. 8V or 2I,+ 6I2-1=0 (D)
d. 24V DUTS DE LOUP CLOCKWISE

+16 +4I, -8In=0 er 4+1,-213=03

IN IUI RESISTA WITH EV ACROSS IT

PUT == I2-I, (SUNUTIN) IN(3) => 4+3I, -2I2=0; MULTIPLY BY 3 >> 12+9I, -6I2=0 ADD TO (D>11+11I, =0 I,=-1 (whole HARW!)
NOW FROM A DOB ALONG TOP IS +16-1×42=12y (-BIC ARROW ISWARD)

25. A series *RC* circuit has a time constant of 1.0 s. The battery has a voltage of 50 V and the maximum current just after closing the switch is 500 mA. The capacitor is initially uncharged. What is the charge on the capacitor 2.0 s after the switch is closed?

- a. 0.86 C IF SOOM & FLOWS 50 V
- b. 0.99 C WITH NO CHANGE ON THE CAPACITUR, THERE CO. 0.43 C IS 50 Y ON THE RESISTUR, SO
- e. 0.50 C $R = \frac{V}{F} = \frac{50}{0.5} = 100 \Omega$

Physics 104 Exam 1 - February 20, 2003

1	A	В	С
2	С	С	В
3	E	D	D
4	В	A	A
5	D	E	E
6	В	С	E
7	D	A	D
8	A	E	A
9	D	В	В
10	В	E	A
11	E	С	E
12	A	В	E
13	С	E	D
14	E	E	A
15	В	E	E
16	D	E	D
17	A	. A	D
18	С	A	A
19	Ą	D	E
20	E	В	В
21	В	В	С
22	C	D	D
23	D	C	С
24	A	E	A
25	D	A	С