Common Chaotic Systems
Department of Physics, University of
Wisconsin,
Madison, WI 53706, USA
April 18, 1998
(Revised November 2, 2004)
Below are a number of common chaotic systems and their parameters
(some
representing new previously unpublished calculations), collected here
for
convenience.
The least significant digit is only a best estimate. A good
project
would be to improve the precision of the values and to add other cases.
Logistic map
- Xn+1 = AXn(1 - Xn)
- Usual parameter: A = 4
- Lyapunov exponent (base-e): l
= ln(2) = 0.693147181...
- Kaplan-Yorke dimension: DKY = 1.0 (exact value)
- Correlation dimension: D2 = 1.0 (exact value,
converges
slowly)
- Ref: R. May, Nature 261, 45-67 (1976)
Hénon map
- Xn+1 = 1 + Yn -
aXn2
- Yn+1 = bXn
- Usual parameters: a = 1.4, b = 0.3
- Lyapunov exponents (base-e): l
= 0.41922, -1.62319
- Kaplan-Yorke dimension: DKY = 1.25827
- Correlation dimension: D2 = 1.220 + 0.036
- Ref: M. Hénon, Commun. Math. Phys. Phys. 50, 69-77
(1976)
Chirikov (standard) map
- Xn+1 = Xn + Yn+1
mod 2pi
- Yn+1 = Yn + k
sin Xn
mod 2pi
- Usual parameter: k = 1
- Lyapunov exponents (base-e): l
= 0.10497, -0.10497
- Kaplan-Yorke dimension: DKY = 2.0 (exact value)
- Correlation dimension: D2 = 1.954 + 0.077
- Ref: B. V. Chirikov, Physics Reports 52, 263-379 (1979)
Lorenz attractor
- dx/dt = s(y
- x)
- dy/dt = -xz + rx - y
- dz/dt = xy - bz
- Usual parameters: s = 10, r
=
28, b = 8/3
- Lyapunov exponents (base-e): l
= 0.9056, 0, -14.5723
- Kaplan-Yorke dimension: DKY = 2.06215
- Correlation dimension: D2 = 2.068 + 0.086
- Ref: E. N. Lorenz, J. Atmos. Sci. 20, 130-141 (1963)
Rössler attractor
- dx/dt = -y - z
- dy/dt = x + ay
- dz/dt = b + z(x - c)
- Usual parameters: a = b = 0.2, c = 5.7
- Lyapunov exponents (base-e): l
= 0.0714, 0, -5.3943
- Kaplan-Yorke dimension: DKY = 2.0132
- Correlation dimension: D2 = 1.991 + 0.065 (converges slowly)
- Ref: O. E. Rössler, Phys. Lett. 57A, 397-398 (1976)
Ueda attractor
dx/dt = y
dy/dt = -x3 - ky + B
sin z
dz/dt = 1
Usual parameters: B = 7.5, k = 0.05
Lyapunov exponents (base-e): l
= 0.1034, 0, -0.1534
Kaplan-Yorke dimension: DKY = 2.6741
Correlation dimension: D2 = 2.675 + 0.132
Ref: Y. Ueda, J. Stat. Phys. 20, 181-196 (1979)
Simplest quadratic dissipative chaotic flow
dx/dt = y
dy/dt = z
dz/dt = -Az + y2 - x
Usual parameter: A = 2.017
Lyapunov exponents (base-e): l
= 0.0551, 0, -2.0721
Kaplan-Yorke dimension: DKY = 2.0266
Correlation dimension: D2 = 2.187 + 0.075 (converges slowly)
Ref: J. C. Sprott, Phys. Lett. A 228, 271-274
(1977)
Simplest piecewise linear dissipative chaotic flow
dx/dt = y
dy/dt = z
dz/dt = -Az - y - |x| + 1
Usual parameter: A = 0.6
Lyapunov exponents (base-e): l
= 0.0362, 0, -0.6362
Kaplan-Yorke dimension: DKY = 2.0569
Correlation dimension: D2 = 2.131 + 0.072 (converges slowly)
Ref: S. J. Linz and J. C. Sprott, Phys. Lett. A 259,
240-245
(1999)
A more extensive list of such systems is included in the paper Improved
Correlation Dimension Calculation, and an even more extensive list
(62 cases) is in Appendix A of the book Chaos
and
Time-Series Analysis by J. C. Sprott (Oxford University Press,
2003).
Back to Sprott's Technical Notes