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ABSTRACT

We revisit the laser model with cavity loss modulation, from which evidence of chaos and generalized multistability was discovered in 1982.
Multistability refers to the coexistence of two or more attractors in nonlinear dynamical systems. Despite its relative simplicity, the adopted
model shows us how the multistability depends on the dissipation of the system. The model is then tested under the action of a secondary
sinusoidal perturbation, which can remove bistability when a suitable relative phase is chosen. The surviving attractor is the one with less
dissipation. This control strategy is particularly useful when one of the competing attractors is a chaotic attractor.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0093727

We revisit the dynamics of a simple model used to describe the
first experimental evidence of chaos in a modulated laser. This
pioneering experiment had an enormous impact on the scientific
community, considering that a laser could also emit in a chaotic
way while retaining its optical coherence properties. Lasers, par-
ticularly class B-lasers, like the CO2 and later semiconductor
lasers, have become reliable devices for studying chaos and gener-
alized multistability. Nowadays, the latter phenomenon is widely
investigated in the most diverse fields, sharing the possibility of
jumping between the different attractors using small perturba-
tions. The model is characterized in terms of its dissipativity. A
novel aspect of the present investigation is the stability analysis in
an increased dimension phase space allowing analytic treatment.

I. INTRODUCTION

Exactly 40 years have passed since the pioneering experiment
on deterministic chaos and generalized multistability in a CO2 laser
with periodic modulation of the cavity losses.1 These two issues have
profoundly influenced and motivated research in different fields

of laser physics. Let us consider multistability, that is, the coexis-
tence of different stable states in nonlinear systems (for two review
papers on the subject, see Refs. 2 and 3). This means that a dissi-
pative dynamical system can have more solutions for equal values
of the control parameters depending only on the values of initial
conditions. The set of initial conditions (more precisely, the clo-
sure of it) leading, in the long term limit, to a given attractor is
called the basin of attraction, whose structure can be fractal. The
complicated structure of basin boundaries in multistable systems
determines their sensitivity to noise and periodic perturbations.
This makes them attractive for controlling techniques allowing the
switching from one attractor to another one. Many dynamical sys-
tems exhibit multistability, including laser physics,4,5 neuroscience,6

chemical reactions,7 climate systems,8 and biological and ecological
ones.9

In the 1982 seminal paper,1 a simple two-level laser model was
used. A few years later, a five-dimensional model was introduced,
accounting for the interaction between the electromagnetic field and
a molecular model where the two lasing levels are coupled to two
rotational manifolds. Using the center manifold theory, it is pos-
sible to reduce the five-dimensional model to a two-dimensional
model by adding suitable nonlinear corrections, as demonstrated by
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Ciofini et al.10 However, considering that the key nonlinearity is the
same in the two models, it often is preferable to use the two-level
model. Very recently, a simple three-dimensional laser model was
proposed to investigate the instabilities of the laser with feedback.
Such a model possesses the minimal and essential nonlinearities
as the Rossler, Lorenz, Chua, and Chen models.11,12 The two-level
model that we use here simply derives from it by eliminating the
feedback equation and introducing a sinusoidal modulation of the
cavity losses parameter and recapturing the basic scheme of the one
introduced in Ref. 1. In such a case, a certain flexibility is used in the
γ parameter, which accounts for the relaxation rate of population
inversion.

Increasing interest has been posed in generalized multistability
and its control, considering the possibility of using small perturba-
tions to select one of the competing solutions (see the review paper
by Pisarchik and Feudel13). Control of multistability applying small
perturbation without phase shift was first introduced in the dis-
sipative Hénon map,14,15 later applied to a semiconductor laser,16

and experimentally demonstrated in a fiber laser17 and in coupled
oscillators.18 The role of the phase of additional harmonic perturba-
tion was first considered by Egorov and Koronovskii19 in the dissi-
pative Hénon map. So, to the best of our knowledge, applying this
control method to a laser model has not been performed yet. Here,
we consider the key role of the phase difference between the main
driving frequency responsible for the chaos and multistability (fmod)

and a secondary sinusoidal perturbation for its control (fpert). The
attention is here focused on the resonant case where fmod = fpert.20,21

The paper is organized as follows: In Se. II, we introduce the two-
level laser model and its time-rescaled version. Numerical results
showing evidence of generalized bistability are here presented. In
Sec. III, we transform this two-level non-autonomous model into an
autonomous four-dimensional dynamical system that enables us to
provide a mathematical analysis and confirm the numerical results
obtained. In Sec. IV, control of bistability is obtained by introduc-
ing a secondary sinusoidal perturbation adjusting the relative phase.
Finally, a discussion of these results as well as the perspectives to be
given to this work is presented in Sec. V.

II. TWO-LEVEL NON-AUTONOMOUS LASER MODEL

Starting from the seminal works of Arecchi et al.,1,22,23 we
propose analyzing the following two-level laser model:

ẋ = −k0x
[

1 + k1

(

B0 + m sin(2π fmodt)
)2 − y

]

,

ẏ = −γ y −
2k0

α
xy + γ p0.

(1)

Here, the fast variable x is the laser intensity with a time-

dependent decay rate k(t) given by k0

[

1 + k1

(

B0 + m sin(2π fmodt)
)2
]

,

where k0 is the nonmodulated cavity loss parameter and k1 accounts
for its modulation depth. B0 + m sin(2π fmodt) is the applied mod-
ulation signal with a bias value B0 summed to a sinusoidal signal
with amplitude m and modulation frequency fmod. The slow variable
y is the population inversion with a decay rate γ , while the parame-
ter y0 is the population inversion, imposed by the pumping process.
The adopted normalization is such that the original equations1 can

be re-obtained considering α = 2k0/γ and a threshold inversion
ythresh = k0/G, where G is the field-matter coupling constant.1

A. Rescaled form

We propose the following change of variables and parameters
to recast Eq. (1) in a rescaled form. Let us pose: t → t

k0
and

k = k1, f′mod =
fmod

k0

, γ ′ =
γ

k0

, α′ =
2

α
.

By dropping ′ for these parameters, the two-level model (1) now
reads

dx

dt
= −x

[

1 + k
(

B0 + m sin(2π fmodt)
)2 − y

]

,

dy

dt
= −γ y − αxy + γ p0,

(2)

where k = 12, B0 = 0.1215, m = 0.02, fmod = 0.005, γ = 0.0025,
α = 0.002, and p0 = 1.252. In the following, we use B0 as the bifur-
cation parameter. Numerical investigations on the nonautonomous
dynamical system (2) highlight the generalized bistability and its
control. After presenting these numerical results, the two-level laser
model [although an attempt to relate bistability and dissipation has
already been made in this system,26 here we want to retrace it start-
ing from the first principles; dissipativity is related to the Jacobian
matrix of the model27,28, Eq. (2)] is transformed into an autonomous
four-dimensional dynamical system that allows its mathematical
analysis.

B. Jacobian matrix

The phenomenon of generalized multistability, the coexistence
of attractors for the same parameter values, is related to the phe-
nomenon of crises.24 The presence of different crises in dynami-
cal systems depends on the amount of dissipation.25 Although an
attempt to relate bistability and dissipation has already been made
in this system,26 here we want to retrace it starting from the first
principles. Dissipativity is related to the Jacobian matrix of the
model.27,28

The Jacobian matrix of the rescaled two-level model (2) reads

J =
(

y − k
(

B0 + m sin(2π fmodt)
)2 − 1 x

−αy −γ − αx

)

. (3)

So, the trace of the Jacobian, which represents the dissipation
rate of the rescaled two-level model (2), reads

Tr(J) = y − k
(

B0 + m sin(2π fmodt)
)2 − 1 − γ − αx. (4)

In Fig. 1(a), the bifurcation diagram of system (2), i.e., the max-
ima of the solution x(t) as a function of B0 (all other parameters are
those given above), is plotted using the forward (yellow) and back-
ward (blue) methods. The monostable regions, wherein the system
exhibits only one dynamic, are illustrated in green color. Note that
the forward–backward method is a straightforward way of detect-
ing multistability in a system’s dynamics since it helps us to remain
in the basin of attraction of an attractor, or in other words, track
an attractor as the bifurcation parameter varies. Therefore, different
attractors can be detected by changing the bifurcation parameter in
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FIG. 1. (a) Forward (yellow) and backward (blue)
bifurcation diagrams (xmax(t)) and the corresponding
(b) forward and (c) backward LEs spectra of system (2)
as a function of B0 for k = 12, m = 0.02, fmod = 0.005,
γ = 0.0025, α = 0.002, p0 = 1.252, and (x(0), y(0))
= (0.3, 1.0028). Green color indicates the regions
wherein the system is monostable.

opposite directions (increasing as forward and decreasing as back-
ward) and selecting the last variables’ values of each step as the next
step’s initial condition.29,30 Employing the Wolf algorithm31 with the
run-time of 1 000 000 ms, the corresponding Lyapunov exponents
(LEs) for the same range of parameter B0 are reported in Figs. 1(b)
and 1(c). The LEs spectra with yellow and blue color themes, respec-
tively, correspond to the forward (yellow) and backward (blue)
bifurcation diagram [Fig. 1(a)].

As we deduce from the bifurcation diagram [Fig. 1(a)], the
attractors’ structure is rather complicated due to the presence of
local and global bifurcations.27,28 However, a qualitative description

can be provided in terms of the five leading periodic orbits, which
is present in this dynamical system (2). Such periodic solutions
are labeled as P1, P2, . . . , P5, and each of them is characterized
by the presence of a single peak every 1–5 periods of the driv-
ing frequency (fmod). As the control parameter B0 is increased, we
observe that the P2 solution is replaced by the P1 solution due
to a crisis. This solution (upper branch solution) coexists with
the lower branch solution and its first subharmonic P1,2 in the
range B0 ∈ [0.0445, 0.0558] (first bistable window BI). The upper
branch solution P2 loses its stability via a subharmonic bifurcation
until a new crisis is encountered and replaced by a P3 solution,
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FIG. 2. Forward (yellow) and backward dissipation
diagrams [Tr(J) over 1 000 000ms] of system (2)
as a function of B0 considering k = 12, m = 0.02,
fmod = 0.005, γ = 0.0025, α = 0.002, p0 = 1.252, and
(x(0), y(0)) = (0.3, 1.0028).

FIG. 3. Zoomed-in version of bistable regions in Fig. 2 for (a) 0.0445 < B0 < 0.0558, (b) 0.0776 < B0 < 0.0858, (c) 0.0988 < B0 < 0.1018, and (d) 0.1120
< B0 < 0.1134. The considered parameters are k = 12, m = 0.02, fmod = 0.005, γ = 0.0025, α = 0.002, and p0 = 1.252, with the initial condition of (x(0), y(0))
= (0.3, 1.0028).
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which coexists with a lower branch chaotic attractor in the range
B0 ∈ [0.0776, 0.0858] (second bistable region). This process is con-
tinued up to the appearance of the P4 solution and the fourth
bistable region around B0 ∈ [0.0988, 0.1018]. The fourth bistability
occurs at around B0 ∈ [0.1120, 0.1134]. At B0 ≈ 0.12, we observe
the last crisis with lower-amplitude attractors, belonging to an
inverse cascade of the primary P1 lower branch solution. The
four bistable regions are identified by using forward and back-
ward methods by scanning the bifurcation parameter in the for-
ward and backward directions.30 These bistable regions can also be
detected in the LEs spectra [Figs. 1(b) and 1(c)] in forward and
backward directions. Relevant information about the organization
of the solutions is provided by the evaluation of the dissipation
rate (trace of the Jacobian matrix). The corresponding dissipa-
tion diagram of the bifurcation diagram described above is shown
in Fig. 2.

From Fig. 2, we can graphically deduce the bistable regions as
well as in Fig. 1 (see the zoomed regions of bistability in Fig. 3). We
observe that in the second bistable region BII, the upper branch peri-
odic solution P3 is characterized by alternating between two values
whose average is below the competing chaotic attractor. Figures 2
and 3 enable us to distinguish between the two coexisting solu-
tions according to their dissipative rate. It is important to note that
the upper branch solutions (periodic solutions) are characterized
by lower dissipativity. Note that the yellow and blue diagrams in
Figs. 2 and 3, respectively, correspond to the forward and backward
bifurcation diagrams in Fig. 1(a).

In Fig. 4, the bifurcation diagram of system (2)), i.e., the max-
ima of the solution x(t) as a function of γ (all other parameters
are those given above), is plotted. From Fig. 4, we observe three
bistability windows around γ = 2.5 × 10−3, γ = 3.5 × 10−3, and
γ = 5.5 × 10−3. In the latter bistability window, the two coexisting
solutions are period ones. From the bifurcation diagram (Fig. 4),

it is also possible to identify the bifurcation regions. Similar to
Fig. 1(a), the forward and backward bifurcations are demonstrated
in yellow and blue colors, respectively. For better visualization, the
monostable regions are plotted in green colors.

Thus, in Sec. II, we numerically show that generalized bista-
bility [simultaneous presence of two kinds of attractors having the
same values of the control parameters but different initial condi-
tions, in our case, we only consider x(0) is different] depends on
either B0 or γ for the two-level laser model (2). Such bistable regions
are highlighted with the help of a new kind of bifurcation dia-
grams, presented in Sec. III. To this aim, in Sec. III, we transform
this two-level non-autonomous model (2) into a four-dimensional
autonomous dynamical system.

III. TWO-LEVEL AUTONOMOUS LASER MODEL

Let us notice that the presence of the sin(2π fmodt) in the right-
hand side of the first equation of the two-level model (2) makes it
non-autonomous. However, recalling that a sine function is nothing
else but the solution of a harmonic oscillator. So, let us pose

z (t) = B0 + m sin(2π fmodt),

which is the solution of the following second-order ordinary differ-
ential equation (ODE):

z̈(t) + ω2z(t) = ω2B0,

where ω = 2π fmod. Using the classical D’Alembert transformation,32

this second-order ODE may be written as the following system of
first-order ODEs:

ż = −ω2u(t), z(0) = B0,

u̇ = z(t) − B0, u(0) = −
m

ω
.

FIG. 4. Forward (yellow) and backward (blue) bifurcation diagrams (xmax(t)) of system (2) as a function of γ considering k = 12, B0 = 0.1215, m = 0.02, fmod = 0.005,
α = 0.002, p0 = 1.252, and (x(0), y(0)) = (0.3, 1.0028). Green color indicates the regions wherein the system is monostable.
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Thus, we transform the two-level non-autonomous model (2)
into an autonomous one, while increasing the dimension of two. We
have

ẋ = −x
(

1 + kz2 − y
)

,

ẏ = −γ y − αxy + γ p0,

ż = −ω2u,

u̇ = z − B0,

(5)

where k = 12, B0 = 0.1215, m = 0.02, fmod = 0.005, ω = 2π fmod,
γ = 0.0025, α = 0.002, and p0 = 1.252. The initial conditions
z(0) = B0 and u(0) = −m/ω are imposed to z(t) and u(t).

A. Fixed points

Using the classical nullcline method, it can be shown that the
dynamical system (5) admits two fixed points,

I1

(

0, p0, B0, 0
)

; I2

(

−
γ

α

1 + kB2
0 − p0

1 + kB2
0

, 1 + kB2
0, 0, 0

)

. (6)

B. Jacobian matrix

The Jacobian matrix of the dynamical system (5) reads

J =







−(1 + kz2 − y) x −2kxz 0
−αy −γ − αx 0 0

0 0 0 −ω2

0 0 1 0






. (7)

Replacing the coordinate of the fixed points I1 (6) in the
Jacobian matrix (7), four following eigenvalues are obtained:

λ1 = −γ , λ2 = −
(

1 + kB2
0 − p0

)

, λ3,4 = ±iω. (8)

Considering −(1 + kB2
0 − p0) > 0, λ2 is real and positive while λ1 is

real and negative. Hence, according to the Lyapunov theorem, the
fixed point I1 is unstable.

Replacing the coordinate of the fixed points I2 (6) in the
Jacobian matrix (7), four following eigenvalues are obtained:

λ1,2 = −
γ p0

2y∗ ±
√

1

2
and λ3,4 = ±iω, (9)

where

1 =
(

γ p0

y∗

)2

+ 4γ (y∗ − p0) with y∗ = 1 + kB2
0.

FIG. 5. Bifurcation diagram (xmax(t)) of system (5) as a function of the initial condition x(0) assuming y(0) = 1, k = 12,m = 0.02, fmod = 0.005,ω = 2π fmod , γ = 0.0025,
α = 0.002, and p0 = 1.252 for (a) B0 = 0.05, (b) B0 = 0.08, (c) B0 = 0.1, and (d) B0 = 0.112.
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Assuming the same set of parameters, 1 < 0 and both real parts
γ p0/y∗ in λ1,2 are negative. Hence, according to the Lyapunov
theorem, the fixed point I2 is stable. Notice that a Hopf bifurca-
tion can only occur if and only if p0 = 0. Nevertheless, in such
a case, 1 would become positive. Therefore, no Hopf bifurca-
tions can occur in system (5). It is important to note that the
emergence of chaos is related to the interplay between the two
stationary points. The unstable fixed point I1 provides the re-
injection to I2, allowing time evolution of the trajectory in the phase
space.

Now, let us highlight the bistable regions of system (5) and so
of the two-level model (2). To this aim, we propose to use bistabil-
ity bifurcation diagrams by plotting (as usual) the maxima of the
variable x(t) as a function of the initial condition x(0) instead of
the control parameter B0, which is fixed here. Figure 5 represents
such bifurcation diagrams for B0 = 0.05, B0 = 0.08, B0 = 0.1, and
B0 = 0.112.

Figure 5 highlights the existence of two different regions of
stability for the attractor solution of system (5). In the following,
we consider that the lower branch corresponds to the first stabil-
ity region while the upper branch corresponds to the second. As an
example, from Fig. 5(a) (B0 = 0.05), we deduce that for x(0) = 1,
the attractor is in the lower branch [yellow attractor corresponds to

the yellow bifurcation in Fig. 1(a)], and the solution is a periodic
solution with one peak for the x(t). For x(0) = 3, the attractor is in
the upper branch [blue attractor corresponds to the blue bifurcation
in Fig. 1(a)], and the solution is a P2 solution [see Fig. 6(a)]. From
Fig. 5(b) (B0 = 0.08), we find that for x(0) = 1, the attractor is in
the lower branch (shown in yellow) and the solution is chaotic. For
x(0) = 3, the attractor is in the upper branch (shown in blue), and
the periodic solution is a P3 solution [see Fig. 6(b)]. From Fig. 5(c)
(B0 = 0.1), we find that for x(0) = 1, the attractor is in the lower
branch (shown in yellow) and the solution is chaotic. For x(0) = 2,
the attractor is in the upper branch (shown in blue), and the peri-
odic solution is a P4 [see Fig. 6(c)]. From Fig. 5(d) (B0 = 0.112), we
find that for x(0) = 3.5, the attractor is in the upper branch (shown
in blue) and the periodic solution is a P5. For x(0) = 4, the attractor
is in the lower branch (shown in yellow), and the solution is chaotic
[see Fig. 6(d)]. Notice that both attractors coexist in all these cases.
The basins of attraction corresponding to the four bistable regions
are reported in Fig. 7, wherein the yellow and blue colors denote the
yellow and blue diagrams in Fig. 1(a) and the attractors of the same
color in Fig. 6. Although the basins of attraction provide general
information about the organization of the phase space, we consider
the representation in terms of bistability bifurcation diagrams easier
to be interpreted.

FIG. 6. Phase portraits of system (5) in the xyz-space for (a) B0 = 0.05, (x(0), y(0)) = (1, 1) (yellow), and (x(0), y(0)) = (3, 1) (blue), (b) B0 = 0.08, (x(0), y(0))
= (1, 1) (yellow), and (x(0), y(0)) = (3, 1) (blue), (c) B0 = 0.1, (x(0), y(0)) = (1, 1) (yellow), and (x(0), y(0)) = (2, 1) (blue), and (d) B0 = 0.112, (x(0), y(0)) = (4, 1)
(yellow), and (x(0), y(0)) = (3.5, 1) (blue). Other parameters are (z(0), u(0)) = (B0,−m/ω), k = 12, m = 0.02, fmod = 0.005, ω = 2π fmod , γ = 0.0025, α = 0.002,
and p0 = 1.252. Note that the yellow and blue attractors correspond to the bistable regions (with the same colors) in Fig. 1(a).
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FIG. 7. Basins of attraction of system (5) for (a) B0 = 0.05, (b) B0 = 0.08, B0 = 0.1, and (d) B0 = 0.112. The predetermined parameters are k = 12, m = 0.02,
fmod = 0.005, ω = 2π fmod , γ = 0.0025, α = 0.002, and p0 = 1.252. Yellow and blue colors correspond to the attractors of the same color in Fig. 6.

FIG. 8. Forward (yellow) and backward (blue) bifurcation diagrams (xmax(t)) of system (10) as a function of B0 considering k = 12, m = 0.02, ε = 0.0006, ϕ = π ,
fmod = 0.005, γ = 0.0025, α = 0.002 p0 = 1.252, and (x(0), y(0)) = (0.3, 1.0028). Green color indicates the regions wherein the system is monostable.
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FIG. 9. Forward (yellow) and backward
(blue) bifurcation diagrams (xmax(t)) of
system (10) as a function of B0 consid-
ering k = 12, m = 0.02, ε = 0.0006,
ϕ = 0, fmod = 0.005, γ = 0.0025,
α = 0.002, p0 = 1.252, and (x(0), y(0))
= (0.3, 1.0028). Green color indicates
the regions wherein the system is
monostable.

IV. CONTROL OF GENERALIZED MULTISTABILITY

Let us consider the effects of a second sinusoidal pertur-
bation with the amplitude ε smaller than m in the two-level
non-autonomous model (2). Consequently, the dynamics is now
described by

ẋ = −x
[

1 + k
(

B0 + ε sin(2π fmodt + ϕ) + m sin(2π fmodt)
)2 − y

]

,

(10)

ẏ = −γ y − αxy + γ p0,

where k = 12, B0 = 0.0832, m = 0.02, ε = 0.0006, fmod = 0.005,
γ = 0.0025, α = 0.002, and p0 = 1.252. Bistability can be removed
by accurately choosing ε and phase difference ϕ, as illustrated in
Fig. 8. In such a case, the optimal value for the phase difference

ϕ is around π = 3.1415. The opposite effect occurs when ϕ = 0
= 2π , as shown in Fig. 9. Removing bistability means stabilizing the
lower-amplitude attractors, which are less dissipative than the upper
branch solutions (see the yellow and blue traces in Fig. 8).

From a comparison with the unperturbed bifurcation dia-
gram shown in Fig. 1, we see that the controlling perturbation
critically affects the dynamics by delaying the occurrence of the
first bifurcation window to a value of the control parameter B0,
where the unperturbed dynamics is chaotic. Furthermore, we note
that, for ε = 0.006, which implies a relative perturbation strength
ε/m = 0.006/0.02 = 30%, the unperturbed bistability window, cen-
tered around B0 = 0.05, is shifted around B0 = 0.06. Here, sev-
eral considerations can be drawn. First, if the competing solutions
are periodic, as in the first bistability window, we need to use a
greater perturbation with respect to the case where the lower branch

FIG. 10. Forward (yellow) and backward
(blue) bifurcation diagrams (xmax(t)) of
system (10) as a function of B0 consid-
ering k = 12, m = 0.02, ε = 0.0002,
ϕ = π , fmod = 0.005, γ = 0.0025,
α = 0.002 p0 = 1.252, and (x(0), y(0))
= (0.3, 1.0028). Green color indicates
the regions wherein the system is
monostable.
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FIG. 11. Forward (yellow) and backward (blue) bifurcation diagrams (xmax(t)) of system (10) as a function of ϕ for (a) B0 = 0.05, (b) B0 = 0.08, (c) B0 = 0.1, and
(d) B0 = 0.112, considering k = 12, m = 0.02, ε = 0.0006, fmod = 0.005, γ = 0.0025, α = 0.002 p0 = 1.252, and (x(0), y(0)) = (0.3, 1.0028). Green color indicates
the regions wherein the system is monostable.

solution is chaotic, and the upper branch is periodic. From Fig. 8, we
clearly see that the first bistability window is shifted in the forward
B0 direction, but the other bistability windows are removed except
the small one around B0 = 0.09. This is consistent with the fact that
the width of the bistable regions diminishes as B0 is increased.

In Fig. 9, where the wrong phase difference ϕ is chosen, we
clearly see that the first bistability window and the other ones
are anticipated with respect to the bifurcation parameter B0. We
also observe that their width is increased when compared with the
unperturbed case of Fig. 1.

As the perturbation strength ε is reduced (keeping the right
phase difference ϕ), we observe that the adopted strategy for con-
trolling bistability remains valid but in restricted regions of the
unperturbed bistable regions. This fact emerges from Fig. 10, where
the relative perturbation strength is ε/m = 0.002/0.02 = 10%.

Keeping the same parameters values, Fig. 11 provides the
forward (yellow) and backward (blue) bifurcation diagrams with
respect to the variation of phase ϕ and four values of B0 in the four
bistable regions, i.e., B0 = 0.05, B0 = 0.08, B0 = 0.1, and B0 = 0.112.
According to Fig. 11, ϕ = π is a proper phase difference to con-
trol the bistability for B0 = 0.05, B0 = 0.08, and B0 = 0.1. However,
it is a wrong phase difference to control bistability for B0 = 0.112.
Hence, Fig. 11 can help to find a proper phase difference for a set of
parameters’ values.

It should be noted that, in Figs. 8–10, the yellow and blue colors
refer to the forward and backward diagrams in bistable regions, and
the green color shows the monostable regions.

V. CONCLUSION

The original two-dimensional laser model that gave evidence
of chaos and generalized multistability was revisited. The consid-
ered model shows how the relaxation rates of the two variables,
laser intensity and population inversion, were crucial for the obser-
vation of multistability. In particular, by adjusting the cavity loss
parameter (the only accessible parameter from an experimental
point of view) via a bias voltage, we better comprehended the solu-
tions in phase space and the bistability regions. Another important
conclusion is the confirmation that multistability could be con-
trolled by means of a secondary sinusoidal perturbation. The key
feature of this open-loop strategy was its phase dependence. This
new aspect was highlighted in the case of the resonance condition
1:1 between the two frequencies. The phase and amplitude of the
perturbation constituted the parameter space for controlling multi-
stability. This control strategy could be implemented in experiments
employing a slightly detuning, 1f, of the resonance condition. This
detuning implies a continuous phase shift of 2π in a time interval
1T = 1/1f. The phase control strategy for multistability was
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proved for both cases, i.e., when the two solutions were periodic
and when one was periodic and the other chaotic. It emerged that
controlling chaotic multistability requires less energy (proportional
to the square of perturbation amplitude) than periodic multista-
bility. The stabilized solution was the one characterized by less
dissipativity. The above general considerations are of fundamental
importance for applications involving multistability.
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