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Abstract – Critical slowing down is considered to be an important indicator for predicting critical
transitions in dynamical systems. Researchers have used it prolifically in the fields of ecology,
biology, sociology, and finance. When a system approaches a critical transition or a tipping point, it
returns more slowly to its stable attractor under small perturbations. The return time to the stable
state can thus be used as an index, which shows whether a critical change is near or not. Based
on this phenomenon, many methods have been proposed to determine tipping points, especially in
biological and social systems, for example, related to epidemic spreading, cardiac arrhythmias, or
even population collapse. In this perspective, we briefly review past research dedicated to critical
slowing down indicators and associated tipping points, and we outline promising directions for
future research.

perspective Copyright c© 2020 EPLA

Introduction. – The passing of time allows many bi-
furcations in complex dynamical systems such as climate,
lake, neurons, and financial markets [1–3]. Such bifurca-
tions (which are called tipping points) are very important.
Many methods have been proposed to predict them. Two
main viewpoints on the prediction of tipping points are
based on a) the system’s model and b) its time series [4,5].
Many studies have been done on the importance of tipping
points in climate systems [6,7]. In [8], the authors investi-
gated the effect of climate reddening on critical transitions.
They showed that memory is as essential as the variance
in understanding the tipping points of climate systems.
Tipping points of global pollination systems have been
studied in [9]. Forest carbon uptake of semi-arid Mediter-
ranean pine forests has been discussed from the viewpoint
of multidecadal shifts in [10].

The “tipping point” was first used in the study of racial
segregation [11]. After the year 2000, this term was used
as a critical transition in many applications such as cli-
mate and ecology [1]. For example, the shallow Dutch
Lake Veluwemeer had clear water for many years. In time,
nutrient loads in the water increased gradually and made

the water darker. Due to the lack of sunlight, the growth
of immersed plants decreased. Thus, the lake system
transferred to a new state (dark state) in 1960, which
cannot recover easily [12]. A social-ecological model has
been used to illustrate the effect of technology on resource
degradation. It can push the most vulnerable members
of society into a poverty trap [13]. The relation of eco-
logical and evolutionary processes affects tipping points
in nature [14]. The effect of interaction to help tol-
erate a community in environmental perturbations was
discussed in [15].

There are two ways for a tipping point to appear. One
of them is when a system’s parameter gradually changes
and causes a massive shift from one stable attractor to an-
other [16]. The second way is when perturbations in the
state force the system to bifurcate [17]. In other words,
a perturbation passes the system’s state from the bound-
ary of the basin of attraction of one stable attractor to
another. The maximum perturbation for which the sys-
tem’s state remains in its current stable attractor is called
resilience. Figure 1 shows the stability landscape for the
two types of occurring tipping points.
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Fig. 1: Different paths to a bifurcation (a) in the stability landscape, (b) by changing conditions, (c) by changes in the
state due to a perturbation. Red arrows show the route towards the bifurcation point. Figure reproduced with permission
from [5].

Usually, the tipping point is defined as shifting from one
equilibrium point to another. In [18], the cyclic dynamic
was discussed as the system’s dynamic, which bifurcates
from one cycle to another. Predicting more complex bi-
furcation points than period-one dynamics was discussed
in [19]. Lyapunov exponent can predict various bifurca-
tions in a period-doubling route to chaos [20,21]. In [22],
various dynamics of fluctuations of animal populations
other than equilibrium points such as irregular waxing and
waning were discussed.

There are some signs to detect when a tipping point
is imminent. One of them is critical slowing down.
The return rate from small perturbation and short-time
memory of signal depicts this phenomenon [23]. The
other sign is variation in the stability of stochastic sys-
tems. In this case, the system’s state crosses through
different attractors repeatedly, and it is called flicker-
ing [16]. The probability density function can show this
phenomenon [24]. In [25], various indices of natural sys-
tems’ stability were categorized into three groups: early
response to pulse, sensitivities to press, and distance to
threshold. They represent three different ways of looking
at the stability of systems. The theory of stability and the
response of systems to perturbations were studied in [26].

A bimodal distribution of the Lotka-Volterra system was
discussed in [27].

In the next section, we survey critical slowing down in-
dicators from various viewpoints. Some important appli-
cations of critical slowing down indicators are discussed in
the third section. The fourth section surveys the limita-
tions of critical slowing down indicators in various appli-
cations. Finally, the fifth section concludes the paper.

Critical slowing down indicators. – The critical
slowing down indicators can be studied in two groups,
measures based on time series and measures based on the
model. Measures based on time series use different time
series properties, while measures based on model adapt a
general model to the time series [4].

In the measures based on time series, there are many
methods. One of them is autocorrelation and spectrum
properties. Near a tipping point, the return rate to
the stable attractor under small perturbations becomes
slower [28,29] and causes an increase in the system’s short-
term memory [30,31] as measured by autocorrelation.
Power spectrum analysis considers spectral properties of
the time series [32]. Another critical index is variance.
The slowness of the return rate near a tipping point can
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cause sliding around the stable state. Also, the strong per-
turbation can push the state to another stable attractor
(flickering). Both slowness and flickering cause increases
in the variance [33]. Near a tipping point, the return rate
to the stable state is slower, which causes changes in the
skewness [34]. Also, the kurtosis is increased because of
flickering [35]. Detrended fluctuation analysis can mea-
sure the short-time and medium-time memory of a time
series. Thus, it is used as a tipping point indicator [36].
Conditional heteroscedasticity measures variations in the
time series pattern and can be used as a critical slow-
ing down indicator [37]. Kolmogorov complexity mea-
sures the stochasticity of the signal and can predict tipping
points [38]. A nonlinearity measure was used to predict
tipping points of populations under stress [39].

Measures based on models use a general model to pre-
dict tipping points. As an example, the nonparamet-
ric drift-diffusion-jump model can present a large family
of nonlinear processes [40]. Using this model, variance
and diffusion are calculated, and tipping points are de-
tected [41]. A time-variant autoregressive model is an-
other tipping point indicator that measures the instant
return rate [42]. The threshold autoregressive model char-
acterizes jumping between two stable attractors [42].

The performance of critical slowing down indicators in
different fields such as physics, physiology, and finance
was categorized in [16]. Recently, researchers have pro-
posed causality methods instead of correlation and re-
gression methods to predict tipping points [43]. In [44],
an autocorrelation-based method was compared with a
variance-based method. It was shown that the method
based on autocorrelation was less robust to short or low-
resolution time series; however, it was more robust to noise
levels.

Tipping points can be studied in a network of inter-
active elements [45]. The recovery rate from small-scale
perturbations in an ecological network has been studied as
an indicator of tipping points [46]. The transitions from
a synchronized to a desynchronized state and detecting
these transitions using resilience indicators were studied
in [47]. Prediction of the tipping point in a mutualistic
network was studied in [48]. A model-free early warning
indicator based on a dynamical network biomarker was
discussed in [49]. Most of the studies on network resilience
have been done on internal stress, such as node removal.
In [50], the network’s resilience to external stress was in-
vestigated. Early warning indicators that characterized
the topological properties of the network were used in [51].
The dynamic network biomarker was designed to predict
the influenza outbreak in [52]. A review of the resilience
and stability in complex networks and their regime shifts
has been done in [53]. In a complex system with many in-
teracting components, some components have good early
warning signals, while others do not offer much informa-
tion for critical transitions. Researchers in [54] proposed
a data-driven method to determine the best components
based on their reliability.

Fig. 2: Stability landscape of two attractors, one healthy and
the other diseased. (a) Far from the tipping point. (b) Near
a tipping point. Figure reproduced with permission from [61].
In the case of acute illness, the system is near its tipping point
and has a low resilience in returning to a stable state.

Applications to biological systems. – Biological
systems such as the heart, neural system, neuromuscu-
lar system, respiratory system, and immune system have
a complicated dynamic and can be studied using non-
linear dynamical tools [55]. On the other hand, despite
many ecology promotions, the complexity of ecosystems
with unknown environmental factors makes their dynam-
ics unpredictable [56–58]. Climate change and its effect
on farmer types were studied in [59]. The importance of
understanding the complex systems to realize the regime
shifts and resilience of the human body has been dis-
cussed in [60].

Critical slowing down indicators can help predict at-
tacks in chronic diseases such as asthma, heart arrhyth-
mias, migraine, epilepsy, and depression [61]. Biological
systems such as the heart [62] and migraine [63] were stud-
ied from the viewpoint of tipping points. Figure 2 shows a
stability landscape of two attractors, one healthy and the
other diseased. The figure depicts that in mild illness (a),
the system is far away from the tipping point. The state
has a high resilience while it returns to its healthy, stable
state. In acute illness (b), the system is near its tipping
point and has a low resilience in returning to the stable
state [61]. Predicting the attack time and its severity in
chronic disease can help its diagnosis and therapy. A com-
putational model of panic disorder as a nonlinear dynami-
cal system and its attacks has been discussed in [64]. Some
dynamical diseases that show critical slowing down near
their attacks were discussed in [61]. The randomness of a
signal can help predict tipping points [38]. Based on this
feature, Kolmogorov complexity is used to predict tipping
points of three models, an environmental model in har-
vesting [65], a lake model [66], and a discrete Ricker-type
model of the fish population [67].

A period-doubling bifurcation can be observed in the
inter-beat intervals (IBIs) of chick embryo hearts under
the injection of a potassium channel blocker [68]. Figure 3
presents the bifurcation diagram and some examples of its
time series, showing the effect of potassium channel block-
ers. The transition from a period-one orbit to a period-
two in the inter-beat interval was estimated using critical
slowing down indicators [68].
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Fig. 3: Bifurcation diagram of inter-beat intervals of a
chick embryo heart under the injection of a potassium chan-
nel blocker. Figure reproduced with permission from [68].
A period-doubling bifurcation is shown in the diagram, which
can be predicted by critical slowing down indicators.

A combination of critical slowing down indicators can
help to predict tipping points better. Authors in [69]
proposed combining some indicators such as standard
deviation, coefficient of variation, correlation, and skew-
ness to predict critical transitions in Daphnia magna’s
population. Extinction of a species is another excit-
ing subject predicted by critical slowing down indica-
tors [70]. This study was done on the population data
of Paramecium caudatum and Didinium nasutum as prey
and predator, respectively. The species interaction has a
significant effect on the response of species to environmen-
tal changes [71]. When biological systems interact with
the environment, the complexity increases. Thus, the de-
tection of critical slowing down in such systems is more
difficult [72].

Dynamic indicators of resilience can be used to predict
system failures in biological systems [73]. In [74], the idea
of increasing risks of morbidity and mortality by decreas-
ing systemic resilience and the capacity to bounce back to
normal functioning after a perturbation was investigated.
The resilience of the whole depends on the resilience of
subsystems that regulate vital parameters such as tem-
perature, glucose level, and mood. Maintaining resilience
is an essential point since there are many chronic diseases
despite advances in the science for drugs and devices [74].

The goal of [75] was investigating practical tools to re-
veal the resilience of older persons in the clinical study.
In [76], the authors described the structure of tests to pre-
dict resilience that are useful in clinical practice. In [77],
two well-known resilience indicators, variance, and tempo-
ral autocorrelation, were applied to time series of the medi-
olateral center of pressure displacement and have shown
successful results in the relationship between resilience and
successful aging. Cross-correlation and variance of time
series of self-rated health were shown which are related
to the frailty level of older adults [78]. The relationship
between OH, frailty, falling, and mortality was studied

Fig. 4: (a) Stability landscape concerning changing Driver 1
(blue) and Driver 2 (magenta) [94]. (b) Variations of stability
and resilience for changing Driver 1 (blue), Driver 2 (magenta),
and Driver 1 and 2 simultaneously (black). Figure reproduced
with permission from [94]. The simultaneous change of two
drivers causes a lack of harmony in the stability and resilience
in critical transition prediction.

in [79]. In [80], a synergetic viewpoint based on criti-
cal slowing down was proposed to predict sports injuries.
The effect of colored noise on the regime shifts of a gene
expression model was studied in [81].

The authors of ref. [82] have used systolic blood pres-
sure as an indicator of mortality risk. It showed that re-
covery of systolic blood pressure in the first minute after
standing is a useful indicator. The authors of ref. [83]
have shown that blood pressure measurements of exercise
testing are useful to predict future risk for adverse car-
diovascular events. Tilt table testing was used to diag-
nose syncope. Tilt table testing has also used gravity to
provoke a downward shift of blood that, in turn, triggers
syncope [84]. Studying noninvasively beat-to-beat blood
pressure shows that initial orthostatic hypotension is re-
lated to syncope in younger adults, while delayed blood
pressure recovery and sustained orthostatic hypotension
is related to falls in older adults [85]. Average systolic
orthostatic blood pressure response was used as an early
marker for dementia risk in older adults [86].

Early warning indicators have attracted some attention
in the prediction of depression [87]. In [88], temporal au-
tocorrelation, variance, and the correlation between fluc-
tuations of self-reported emotions were used to predict
the tipping points of depression. Many studies have dis-
cussed epileptic seizures as a tipping point and their pre-
diction [89–92]. Gain and losses of symptom severity for
mood disorders in patients can be predicted using early
warning signals of daily self-ratings [93].

Limitations of critical slowing down indicators.
– There are some limitations to the performance of crit-
ical slowing down indicators. For example, researchers
in [94] have shown that several significant factors in the
dynamics of yeast population can cause the different per-
formance of tipping point indicators. The subject is due to
the difference between stability (return rate) and resilience
(basin of attraction) concerning changing different signifi-
cant factors. Part (a) of fig. 4 shows variations of stability
and resilience when changing two parameters (Driver 1 or
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Fig. 5: Six cases of bifurcation for changing a driver (upper panels) and their calculated AR(1) (green) and SD (blue) (lower
panels). Figure reproduced with permission from [95]. Critical slowing down indicators can predict transitions with variations
in attractors’ stability while they cannot predict cases that bifurcate with a high perturbation.

Driver 2). It shows that the harmony between stability
and resilience can be removed when changing two param-
eters simultaneously. Part (b) of fig. 4 shows three cases of
changing Driver 1 (blue), Driver 2 (magenta), and chang-
ing Driver 1 and Driver 2 simultaneously (black). The
simultaneous change of two drivers causes a lack of har-
mony in stability and resilience. Thus, by changing these
two drivers toward a tipping point (black curve), stability
tells us that the system is getting further away from the
tipping point while resilience tells us that a tipping point
is near. This study was done on the yeast population.

On the limitation of critical slowing down indicators,
the authors of ref. [95] have defined 6 cases of changing

parameter, and critical slowing down indicators have been
studied in these cases. The upper panels of fig. 5 show
a bifurcation diagram (black) and the variation of the
driver (red). The lower panels show autocorrelation at
lag 1 (AR1, green) and standard deviation (SD, blue) re-
lated to the bifurcation. Case 1 is changing the parameter
linearly and slowly. Part (a) of fig. 5 shows that AR1
and SD increase before the bifurcation point. Case 2 is
changing periodically a fast-slow parameter. Part (b) of
fig. 5 shows that AR1 and SD increase before the tipping
point. Case 3 shows stochastic resonance and parameter
changes in a sinusoidal form. In this case, the parameter
just causes the state to approach the tipping point, and
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then the perturbation can cause a bifurcation. Due to the
large perturbation, critical slowing down cannot show the
bifurcation points (part (c) of fig. 5). Case 4 shows bi-
furcation under noisy conditions. Part (d) of fig. 5 shows
that AR1 and SD cannot predict the bifurcation point in
this case. Case 5 shows bifurcation under an accidentally
extreme event. Critical slowing down indicators cannot
predict this bifurcation (part (e) of fig. 5). Finally, case
6 shows a big stepwise change in the driver. Part (f) of
fig. 5 shows that AR1 and SD cannot predict the tipping
point in such a case. The performance of critical slowing
down indicators in various cases of approaching the tip-
ping points in a system with a period-doubling route to
chaos was discussed in [96].

In the presence of noise, errors in the prediction of tip-
ping points using critical slowing down indicators increase.
For example, increasing the amplitude of the environ-
ment’s stochastic effects increases the variance, while auto-
correlation is constant. Also, increasing the colored noise
increases the variance and autocorrelation [95]. Thus, crit-
ical slowing down indicators can predict a tipping point in
a system while only noise was changed, and nothing hap-
pened to the dynamical system.

Conclusion. – Various studies of critical slowing down
and resilience before the critical transitions were surveyed
in this perspective. Critical transitions and their predic-
tion have been used in many applications, such as eco-
logical and biological systems. The slowness before the
bifurcations can be measured, and it can reveal the ap-
proach to a tipping point. Many methods were proposed
to detect critical slowing down before the critical changes,
which we have reviewed from various viewpoints. Espe-
cially the critical transitions and their prediction in biolog-
ical systems were given attention. We have also outlined
limitations to those indicators which should be considered
in their applications. We hope that this perspective can
illuminate future directions for the field.
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