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Quantifying the robustness of a chaotic system

J. C. Sprott®

Physics Department, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53700,

USA
(Dated: 11 January 2022)

As a way to quantify the robustness of a chaotic system, a scheme is proposed to determine the extent to
which the parameters of the system can be altered before the probability of destroying the chaos exceeds
50%. The calculation uses a Monte—Carlo method and is applied to several common dissipative chaotic maps

and flows with varying numbers of parameters.

In recent decades, hundreds of examples of it-
erated maps and systems of ordinary differential
equations with chaotic solutions have been re-
ported and studied. Some of these systems are
intended as models of natural phenomena, but
most are mathematical illustrations of particular
dynamical behaviors. In either case, it is useful
to know how much the parameters can vary from
their nominal values before the chaos is destroyed
since that will indicate how realistic the model is
and how difficult it might be to employ the sys-
tem in some practical application. For example,
when constructing an electrical circuit designed
to produce a chaotic signal, it is useful to know
how carefully the component values must be cho-
sen and controlled.! However, such information is
rarely provided in the published literature. Thus
it is useful to propose a quantitative measure that
others can use and to give values for some com-
mon chaotic systems as a baseline for comparison.

I. INTRODUCTION

One of the defining characteristics of chaos is the sensi-
tive dependence on initial conditions, usually quantified
by calculation of the Lyapunov exponent(s).? Generally,
a change in initial conditions will greatly alter the sub-
sequent trajectory but will not affect the attractor for
a dissipative dynamical system. However, a sufficiently
large change in initial conditions can put the orbit in the
basin of a different attractor or can make it unbounded
and approach infinity. Thus it is useful to know the shape
and size of the basin of attraction, and a method for do-
ing so has been suggested.?

Similarly, a small change in the parameters of a chaotic
dynamical system will greatly alter the trajectory but
will only slightly distort the attractor unless the chosen
parameters happen to be close to a bifurcation point, in
which case the attractor can be destroyed or can undergo
a qualitative change such as becoming a periodic limit cy-
cle. Hence it is customary to choose the parameters of
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a chaotic system to be well away from any such bifur-
cations. Note that parameters can usually be converted
to initial conditions by adding variables to a dynamical
System.4

Mathematically, a robust dynamical system can be de-
fined as one in which all small perturbations of the pa-
rameters away from their nominal values leave the sys-
tem qualitatively unchanged.® Said differently, quantities
that characterize the dynamics and topology such as Lya-
punov exponents and attractor dimension change contin-
uously as a function of the size of the perturbation for
a robust system. A system that is not robust is said to
be ‘fragile.” It is usually also required that a robust sys-
tem has no coexisting attractors. For some applications
such as secure communications,® it is critically impor-
tant to have a rigorously robust chaotic system. There
is a large literature devoted to the design and proof of
robust systems.”

However, for many purposes, a less rigid definition of
robust is useful, and it is informative to assign a nu-
merical value to quantify the robustness of the system,
rather than to have a simple binary classification. Such a
quantity should be a dimensionless number in the range
of zero to one, or 0 to 100% to facilitate comparisons
among diverse dynamical systems. There are many ways
such a number could be constructed, and what follows is
only one reasonable suggestion.

1Il. EXAMPLE: HENON MAP

To illustrate the idea, it is useful to consider in detail
the simple two-dimensional iterated map introduced by
Hénon® and given by

Xpp1=1—aX,?+0Y, )
Y;z+1 - Xn

with chaotic solutions for the parameters ¢ = 1.4 and
b = 0.3 and initial conditions Xy = Yy = 0.

The choice of initial conditions will generally alter the
results unless the attractor is globally attracting, which
the Hénon map is not. However, initial conditions at or
near the origin are usually appropriate since chaos is born
in nearly all mechanical and electronic systems through
a route that begins when the equilibrium at the origin
loses its stability.
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FIG. 1. Regions of parameter space (in red oline) for which
the Hénon map has chaotic solutions with Xo = Yy = 0. The
black circle is centered on the nominal parameters (a = 1.4
and b = 0.3) and has a radius such that half of the enclosed
parameters give chaotic solutions.

Figure 1 shows a 1000 x 1000 grid of parameters in the
range of 0 < a < 2.8 and 0 < b < 0.6 with the chaotic
regions colored in red (online). The nominal parameter
values are at the center of the plot, and the dimensionless
parameters (a/1.4 and b/0.3) range from 0 to 2 (a £100%
variation in each parameter).

In this case, chaos is identified by eliminating solu-
tions that are unbounded (|z| > 1000) or periodic (with
periods up to 1000) and assuming those that remain are
chaotic. Using a positive Lyapunov as a criterion gives a
similar result. Exactly 107786 of the million points (ap-
proximately 11.8%) are chaotic, a value of some interest
in its own right, and one that could serve as a measure
of robustness.

A careful examination of the figure suggests that the
parameter space is dense in periodic windows? as it typi-
cal of low-dimensional dynamical systems with a smooth
nonlinearity.!? Thus the system does not satisfy the
mathematical definition of robust. However, small per-
turbations of the parameters are much more likely than
not to preserve the chaos.

This notion can be quantified by constructing circles
of radii r = /(a/1.4 — 1)2 + (/0.3 — 1)2 centered on the
nominal values and calculating the fraction F(r) of points
within each circle that are chaotic. Figure 2 shows the
result of such a calculation for the Hénon map.

Generally, but certainly not always, F(r) is a mono-
tonically decreasing function of r, that for this case first
falls below F' = 0.5 at » = 0.246, hereafter denoted as
ro. Hence we conclude that the Hénon map is about 25%
robust in the sense that a 25% variation in parameters
is more likely than not to destroy the chaos. Figure 1
shows a circle of radius rg, the interior of which contains

F(n)
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FIG. 2. Fraction of chaotic solutions within a distance r of
the nominal normalized parameter values in parameter space
for the Hénon map with Xo = Yo = 0.

an equal number of parameter values that give chaotic
and nonchaotic solutions.

It is also useful to quantify the sensitivity of the chaos
to the parameters ¢ and b individually with the other
held constant at its nominal value. Such a calculation is
straightforward and leads to 7o = 11% for a and 79 =
100% for b. This result is consistent with the vertical
clongation of the chaotic region in Fig. 1. The value of
100% means that most values fora = 1.4 and 0 < b < 0.3
give chaos, while most values for 0.3 < b < 0.6 do not.

To assess sensitivity of the robustness to initial condi-
tions, the calculation was repeated with Xy = Yy = 0.9,
which is close to the boundary of the basin of attraction.
The calculated robustness was 23.2%, which is close to
the value of 24.6% for initial conditions at the origin.
Whether this result is typical is an open question.

1Il. MONTE-CARLO ALGORITHM

The method just described is meant to illustrate the
concept with a simple example, but it is unwieldy and
computationally-intensive, especially for systems with
more than two parameters where the circles become
spheres or hyperspheres in parameter space and for sys-
tems of ordinary differential equations where identifica-
tion of chaos requires calculation of the largest Lyapunov
exponent or some equivalent quantity. Thus it is useful
to describe a Monte—Carlo algorithm®® that gives a good
approximation to ro with orders of magnitude less com-
putation and without the need to make plots and graphs.

The method begins by making an initial guess for the
value of rg such as rg = 0.5 and randomly choosing a
parameter point within a circle of radius r = V2rg. The
factor /2 is not critical and can be replaced by any value
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FIG. 3. Two Monte—Carlo calculations of the robustness of
the Hénon map with Xy = Yy = 0 as a function of the number
of cases tested. The black horizontal line is the value of rog =
0.246 calculated from F'(r) = 0.5 in Fig. 2.

somewhat greater than 1.0. For this first point, the frac-
tion that is chaotic Fy(ro) will be either 1.0 if the solution
is chaotic or zero if not. Continue the process if neces-
sary N times until Fy(rg) = 1/N > 0 (until there is one
chaotic case with 7 < rg). On average, this will occur
for N = 27/2 where p is the dimension of the parameter
space (the number of parameters).

Then replace 19 by 2rgFn(ro) and continue iterating
Fy(rp) until it converges to a value of 0.5 and ry con-
verges to a value that is no longer changing by a signifi-
cant amount. This procedure is nothing more than New-
ton’s method for finding the root r = ry of the equation
F(r)—0.5 = 0 assuming the local slope is dF'/dr = —1/2r
at r = 1o, which is a crude approximation to the curve in
Fig. 2. Newton’s method converges rapidly if the slope
is known accurately, which is unfortunately not the case
here.

Nonetheless, applying the method to the Hénon map
for two different instances (different sequences of ran-
domly chosen parameters), gives the result in Fig. 3. De-
spite the fact that this is a slowly converging case because
of the shoulder on the curve in Fig. 2 near F(r) = 0.5, the
value of 7 appears to converge to the expected value of
ro = 0.246 (shown as a horizontal line in Fig. 3) to within
a few percent after a few thousand iterations. Thus the
method is several orders of magnitude faster than the
million-point method in the previous section and simpler
to implement.

Pseudocode, written in a dielect of BASIC that imple-
ments the Monte—Carlo calculation that produced Fig. 3
is shown in Fig. 4.

The computational time required to obtain a meaning-
ful value for the robustness will depend on the complexity
of the system (in particular, whether it is an iterated map

ro = 8.5 *Initial guess
FOR i = 1 TO 5088 "Iterate 50888 times
po *Choose random parameters
a = 2.8=RND
b = 8.6=RND
rsq = (af1.4 - 1)"2 + (b/0.3 - 1)"2
LOOP UNTIL rsq < 2xroxro
r2(i) = rsq "Save r squared values in array
tot = 1
FOR j =170 i "tot is the number of cases < ro
IF ABS(r2(j)) < roxro THEN INCR tot
NEXT j
x(0) = 8 "Set initial conditions
y(o) = o .
FOR n=1 TO 1e5 “Iterate the map 108,800 times
x(n) = 1 - a=x(n-1)"2 + b=y(n-1)
yi{n) = x(n-1)
IF ABS(x(n)) > 1808 THEN EXIT FOR *Unbounded
p=28
FOR j = n - 1 TO MAX(®, n - 10808) STEP -1
IF x(j) = x(n) AND y(j) = y(n) THEN
p=i *solution has period p
EXIT FOR
END IF
NEXT j
IF p > 8 THEN EXIT FOR
NEXT n
IF n > 1e5 THEN "It*s chaotic?
r2(i) = -ABS(r2(i)) "Negative r2 signifies chaos
c=1
FOR j =1 T0 i *c is the number of chaotic cases
1F r2(j) < 8 AND r2(j) > -roxro THEN INCR c
NEXT j
Fr = c/tot *Fraction of cases that are chaotic
ro = 2xroxfr "Update the estimate of ro
PRINT Fr, ro
END IF
NEXT i

FIG. 4. Pseudocode used to implement the Monte—Carlo cal-
culation that produced Fig. 3.

or system of ordinary differential equations), the com-
puter used, the efficiency of the compiler, the numerical
method, and the desired accuracy. The result in Fig. 3
required about 20 minutes of computation using the code
in Fig. 4, while the result from Fig. 1 required about six
days of computation on a common desktop personal com-
puter using the PowerBASIC Console Compiler.

Of course, there is some loss of accuracy with such a
Monte—Carlo method, but it does not make sense to seek
an overly accurate value because it will depend on the
particular choice of nominal parameters and initial con-
ditions. Choosing nominal values where the robustness is
greatest may be a good strategy for some purposes. The
method is best suited for comparing various systems and
identifying ones that are highly robust and others that
are very fragile. The next section will give some examples
of each.

IV. ROBUSTNESS OF FAMILIAR SYSTEMS

Most of the familiar examples of chaos occur in systems
of ordinary differential equations with simple polynomial
and piecewise-linear nonlinearities, and it is instructive
to calculate the robustness for some of those cases.

A. Lorenz system

Perhaps the most familiar and extensively studied case
is the Lorenz system,!?

t=o0(y—x)
j= —wzt pr—y 2)
’é:xy_ﬁz?
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with chaotic solutions for the parameters o = 10, p = 28,
and S = 8/3. The resulting attractor has a global basin
of attraction (all initial conditions go to the attractor
except for a set of measure zero representing the three
equilibrium points and the infinitely many unstable peri-
odic orbits).!® Since the origin is an equilibrium point for
all values of the parameters, it is necessary to take dif-
ferent initial conditions such as xg = yg = 2o = 0.01, but
the results should be and are independent of the choice.

The parameter space is three-dimensional with spheres
of radius r = /(0/10 — 1)2 + (p/28 — 1)2 + (33/8 — 1)2
representing points equidistant from the nominal param-
eter values. Using the Monte—Carlo method described
in the previous section gives a value of o ~ 66%. For
this and the following cases, N is at least ten thousand,
and the value of ry appears to have converged to the two
quoted significant digits. The sensitivity to each param-
eter individually is 93% for o, 64% for p and 79% for
B. Thus the Lorenz system is relatively robust, at least
compared with the Hénon map..

It is instructive to add coefficients to the remaining
four terms in Eq. (2) with nominal values of 1.0 and calcu-
late the robustness in the resulting seven-dimensional pa-
rameter space. The result is 79 ~ 87%, which is slightly
greater than the three-dimensional case. Thus the ro-
bustness of a system appears not to depend strongly
on the chosen parameters provided there are sufficiently
many to completely characterize the dynamics. In gen-
eral, this means that the number of parameters should
be equal to the number of terms in the equations minus
D+1, where D is the dimension of the system since D of
the variables and time can be linearly rescaled without
altering the dynamics.

B. Rossler system

Similar to the Lorenz system but with a single
quadratic nonlinearity is the Rossler system,'*

T=—-y—=z
y=z+ay (3)
Z=b+z(x—c),

with chaotic solutions for the parameters a = b = 0.2
and ¢ = 5.7 and initial conditions xg = yo = 29 = 0.

The parameter space is three-dimensional with spheres
of radius r = /(5a — 1) + (5b — 1)2 + (¢/5.7 — 1)2 rep-
resenting points equidistant from the nominal parameter
values. Using the Monte—Carlo method described in the
previous section gives a value of ro ~ 51%. The sensitiv-
ity to each parameter individually is 53% for a, 82% for
b and 57% for ¢. Thus the Rossler system is only slightly
less robust than the Lorenz system.

C. Chua’s Circuit

Probably the most famous and highly studied chaotic
electrical circuit was developed by Chual® and can be
modeled by the piecewise-linear equations

i =cly - +br+5(a—b)(|e+ 1] - o — 1)
j=r—y+z (4)
Z=—dy,

with chaotic solutions for the parameters a = 8/7,b =
5/7,¢ =9, and d = 100/7 and initial conditions xy =
Yo = 20 = 0.01.

The  parameter  space is  four-dimensional
with hyperspheres of radius r =
V(7a/8 = 1)2+ (7b/5 — 1)2 + (¢/9 — 1)% + (7d/100 — 1)2
representing points equidistant from the nominal param-
eter values. Using the Monte—Carlo method described
in the previous section gives a value of rq =~ 17%. The
sensitivity to each parameter individually is 48% for a,
63% for b, 22% for ¢, and 25% for d. Thus Chua’s circuit
is somewhat less robust than the Lorenz system despite
having a similar double-lobe attractor. As a model of
an electrical circuit, it might be more reasonable and
instructive to choose the parameters to be values of the
circuit components.

D. Jerk Circuit

Even simpler than Chua’s circuit is the two-parameter
piecewise-linear system given by'6

T=y
y==z (®)
Z=—az—by+|z|]—1,

with chaotic solutions for the parameters a = 0.6 and
b = 1 and initial conditions zop = yo = z9 = 0. Note
that the constant 1 in the Z equation is an amplitude
parameter!” that only affects the size of the attractor
and thus cannot be used as a bifurcation parameter.

Equation (5) is called a ‘jerk system’ because it can
be written in compact form as @ = —aZ — bt + |z| — 1,
where 2 is the time derivative of the acceleration & in
a mechanical system where z is the displacement.'® The
form of the nonlinearity || makes it especially amenable
to electronic implementation using diodes, and it is just
one of a large family of similar systems with various
nonlinearities.™

The parameter space is two-dimensional with circles of
radius r = /(a/0.6 — 1)2 + (b — 1)2 representing points
equidistant from the nominal parameter values. Using
the Monte—Carlo method described in the previous sec-
tion gives a value of ro & 5.4%. The sensitivity to each
parameter individually is 9% for aand 7% for b. Thus the
electronic circuit is less robust than Chua’s circuit, but
it is simple to construct and operates reliably provided
one of the circuit components can be carefully adjusted.




AIP

Publishing

2.01 a 2.03
FIG. 5. Bifurcation diagram of the local maxima of = for the

simplest chaotic system in Eq. (6) with zo = yo = 20 = 0.05
showing seven of the infinitely many tiny periodic windows.

E. Simplest chaotic system

The final example is another jerk system but with a
single parameter and a quadratic nonlinearity,°

=y
y==z (6)
i=—az+y? -z,

with chaotic solutions for the parameter a = 2.02 and
initial conditions zg = yg = zp = 0.05. It can be writ-
ten in compact form as ¥ = —a@ + 4% — x, and it has
been rigorously proved that no simpler chaotic system
with a single quadratic nonlincarity exists.?! Variations
of this system with different nonlinearities?? have been
implemented electronically.2?

The parameter space is one-dimensional with r =
|a/2.02—1| representing points equidistant from the nom-
inal parameter value of @ = 2.02. Using the Monte—Carlo
method described in the previous section gives a value
of ro &~ 1.7%. Thus this system is relatively fragile in
part because of its small basin of attraction that does
not include the origin and accounts for why it was not
discovered much earlier.

With a single parameter, it is easy to visualize the
behavior of the system in a conventional bifurcation di-
agram as shown in Fig. 5 where the local maximum of
x is plotted. The system undergoes a common period-
doubling route to chaos as the parameter a decreases.
The plot shows the usual large period-3 window on the
right with its period-doubling, but there are infinitely
many tiny periodic windows in the vicinity of a = 2.02,
mostly with very large periods, seven of which (with ap-
parent periods of 4, 6, 8, 7, 5, 7, and 9 from left to right)
are barely visible in the plot. These windows have tran-
siently chaotic orbits, some of which require calculating
for a time of ~ 4 x 10* to resolve, which is rarely done
in the literature and accounts for an overestimate of the
robustness of some systems. Points on the left of the

plot as well as those outside the basin of attraction have
unbounded orbits.

TABLE I. Selected chaotic systems with their robustness rg.

System Eq. Parameters Init Cond 70

Hénon® (1) 1.4, 0.3 0 25%
Lorenz'? (2) 10, 28, 8/3 0.01 66%
Rossler'  (3) 0.2, 0.2, 5.7 0 51%
Chua'® (4) 8/7,5/7,9,100/7 0.01 17%
Jerk!® (5) 0.6, 1 0 5%
Simplest®®  (6) 2.02 0.05 L.7%

V. CONCLUSION

This paper has described a simple method for quan-
tifying the robustness of a chaotic system and given a
number of examples. Table 1 summarizes the cases pre-
viously discussed, showing the wide range of their robust-
ness. The method can be applied with equal ease to any
dynamical system with any number of variables and pa-
rameters and any desired mode of behavior (stable equi-
librium, periodic, quasiperiodic, chaotic, hyperchaotic).
Such a calculation should probably be included as part of
the complete description of any new chaotic system that
is proposed or reported.
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