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ABSTRACT

There are complex chaotic manifolds in practical nonlinear dynamical systems, especially in nonlinear circuits and chemical engineering. Any
system attractor has its own geometric and physical properties, such as granularity, orientation, and spatiotemporal distribution. Polarity
balance plays an important role in the solution of a dynamical system including symmetrization, attractor merging, and attractor self-
reproducing. The absolute value function and the signum function manage and control the polarity balance, strictly regulating the attractor
distribution by switching the polarity balances. Attractor self-reproducing is an attractive regime for constructing the desired multistability,
where the coexisting attractors at different positions can be extracted by a selected initial value. Polarity balance is the key factor for attractor
self-reproducing, where the offset boosting of an attractor needs an available polarity controller to restore the imbalanced polarity.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0007668

Three types of polarity controllers can be applied for restoring
the polarity balance in a dynamical system, namely, the variable
inversion, the polarity controller from the signum function and
absolute value operation, and the polarity converter from a gen-
eral absolute value function. Offset boosting in any dimension
may disrupt the polarity balance in the attractor self-reproducing
process. A new polarity balance can be restored by all types of
polarity controllers; in particular, the polarity imbalance raised
by the polarity converter can be restored by itself.

I. INTRODUCTION

In a multistable dynamical system, the types of those coexist-
ing attractors may be the same or different and even the number
of those coexisting attractors can be greater or less. Two"’ or three’
different types of coexisting attractors and infinite uncountable dif-
ferent attractors’™ or countable similar attractors’"” can be found.
Coexisting attractors reside in their own basins of attraction in phase
space.'*™¥ The basin boundary can have a fractal structure'®” or
smoothly separated zones.'” In self-reproducing systems, the attrac-
tors shrink their original basins and reside in a limited zone of
attraction, saving space for other coexisting replicas.'” In this case,

the original attractor reproduces itself and arranges the replica in
the phase space by offset boosting.'“* In this process, the polarity of
the replica may change in one”' or more dimensions.’' In particular,
the reproduced attractors may be exactly the same without polarity
revision in any direction or obtain polarity reverse in some direc-
tions. Thus, to reproduce the inherent attractors in a system, it is
important to keep the polarity balance of the system structure. If the
function for self-reproducing revises the polarity of a variable, it calls
a return in other ways. These chaotic systems of conditional sym-
metry maintain a polarity balance by revising the polarity of some of
the variables when a polarity break arises from the process of offset
boosting.

Symmetric chaotic systems can have a symmetric pair of coex-
isting attractors”’~° that maintain the polarity balance due to their
special structure rather than offset boosting. Self-reproducing sys-
tems with an infinite number of attractors*** easily obtain a polarity
balance from offset boosting by a suitable choice of the period of
space. Meanwhile, for doubling coexisting attractors,'’ a plug-in
signum function is necessary for restoring the polarity broken by the
offset boosting. Furthermore, the polarity balance can be retrieved
by the absolute value function when the offset boosting brings extra
polarity revision. In this paper, possible polarity revisions induced
by offset boosting are discussed in Sec. 11, and the polarity balance
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recovered from an internal polarity modification and from an extra
signum function is discussed in Sec. I1I. The polarity balance recov-
ered by an absolute value operation is demonstrated in Sec. IV. A
discussion of polarity balance is included in the last section.

1. OFFSET-BOOSTING-INDUCED POLARITY REVISIONS

Any variable in a dynamical system includes two classes of
information: amplitude and polarity. Correspondingly, there are
two opposite polarity adapters: one is the signum function that
maintains the polarity while the other is the absolute value func-
tion that removes the polarity, and, therefore, a system variable can
be written as x = |x|sgn(x). Based on these two basic operations,
those dynamical systems can be revised for amplitude control,”
linearization,” or even self-reproducing.'"'¥ Two typical opposite
polarity adapters can be applied for keeping the polarity balance of
a system structure when it produces two or more coexisting attrac-
tors with different orientations. For better demonstration, it is easy
to see that symmetric systems can give symmetric pairs of coexist-
ing attractors without any polarity adapter owing to its own polarity
balance. It is the introducing of polarity adapter that transforms the
asymmetric Rossler system to be symmetric ones.”

Therefore, any polarity-associated revision in a dynamical sys-
tem should maintain the balance of polarity and the above two
adapters make it possible. For constructing self-reproducing sys-
tems, the polarity restoring comes not only from the inner polarity
operation but also from offset boosting. As shown in Fig. 1, two
classes of polarity adapters revise the polarity directly while the other
two typical operations from the trigonometric function and absolute
value function change the polarity in the manner of a slide polarity

Trigonom Slide Absolute
etric | — polarity |— | value
function converter function
Offset
—> | boosting | «——
Polarity switching x+d Polarity switching

-*

% Maintain Remove
the polarity System the polarity
—> . ——
variable x
. . Absolute
Signum |__| Polarity | __
. value
function adapter .
function

FIG. 1. Polarity balance in a dynamical system.
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converter, where the polarity reversal is caused by offset boost-
ing. Different segments in the function give two opposite polarities,
as shown in Fig. 2. Here, we take the four functions as follows:
flx) = |x| — 5, g(x) =5 — |x], h(x) = sin(x), and r(x) = cos(x). Polar-
ity switching (PS) can clearly be seen, as indicated by the positive
slope and negative slope. In the corresponding regions of the func-
tion, it poses a positive sign or a negative sign into the system which
brings different polarity interferences. In fact, it is found that the
polarity adapter and slide polarity converter are widely applied in
chaotic systems together to obtain conditional symmetry or attrac-
tor self-reproducing. The newly introduced polarity reverse from the
offset boosting can be balanced by the signum function for attrac-
tor doubling.”’ In general, the polarity adapter and slide polarity
converter can realize polarity compensation for each other in the
process of attractor self-reproducing.

I1l. POLARITY BALANCE RECONSTRUCTION BY THE
SLIDE POLARITY CONVERTER

The Rossler system has a unique structure for polarity revision,

X=-y—z
y=x+ay, )
z=b—cz+ xz.

When a=b=0.2 and ¢=5.7, the system has a chaotic attrac-
tor with Lyapunov exponents (LEs) of (0.0714, 0, —5.3943)
and a Kaplan-Yorke dimension of Dxy =2.0132. System (1) has
two equilibrium points, (0.0070, —0.0351, 0.0351) and (5.6930,
—28.4649, 28.4649) with corresponding eigenvalues (—5.6870,
0.0970 £ 0.9952i) and (0.1930, —0.000005 =+ 5.4280i), which are spi-
ral saddle points.”’ The application of a polarity adapter, namely,
the absolute value function and signum function, revises the polar-
ity balance freely, giving three regimes of symmetry: reflection
symmetry, rotational symmetry, and inversion symmetry.”’

Furthermore, such flexible polarity freedom leaves another
possibility for hosting conditional symmetry, where the polarity
adjustment induced by the slide polarity converter can be retrieved
by internal polarity modification. Let us consider the following
derived version of system (1),

X=-y—z
y=x+ay, (2)
z="b+ xz— c|z|.

When a=b=0.2 and ¢=5.7, system (2) has a chaotic attrac-
tor with Lyapunov exponents (LEs) of (0.0711, 0, —5.3945) and a
Kaplan-Yorke dimension of Dxy = 2.0132. The polarity distribution
is revised by the polarity adapter of the absolute value function ||,
which produces a new possibility of polarity balance when a slide
polarity converter is used. Suppose there is offset boosting in the z
dimension realized by F(z) = |z| — 15,

X =—y—Fi(2),
y=x+ay (3
z = b+ xF,(2) — c|F3(2)|.

Chaos 30, 063144 (2020); doi: 10.1063/5.0007668
Published under license by AIP Publishing.

30, 063144-2


https://aip.scitation.org/journal/cha

Chaos ARTICLE

scitation.org/journal/cha

FIG. 2. Polarity switching (PS) in the
slide polarity converter: (a) f(x), (b) g(x),

(c) h(x), and (d) r(x).

System (3) provides conditional rotational symmetry according
to the dimensions x and y, while the variable z returns the polarity
balance from the slide polarity converter F(z). As predicted, when
a=b=0.2, c=5.7, and F,(z) = F,(2) = F3(z) = F(z) = |z] — 15,
system (3) exhibits coexisting chaotic oscillations of conditional
symmetry with approximate Lyapunov exponents (LEs) of (0.0700,
0, —5.4009) and a Kaplan-Yorke dimension of Dxy =2.0130, as
shown in Fig. 3. Basins of attraction of the coexisting attractors are
shown in Fig. 4. Note that unlike other chaotic cases of conditional
symmetry, the basin of one attractor is included in another basin
from a specific projection of z=0."" Black lines are cross sections
of the attractors, and white regions are unbounded orbits. The red
attractor in Fig. 3 never intersects the z= 0 plane, and that is why it
does not appear in black on Fig. 4.

The specific fractal asymmetric basins of attraction also indi-
cate an unusual bifurcation. When the parameter b varies in [0.1,
0.4], system (3) undergoes two independent different bifurcations
from two separate initial conditions, as shown in Fig. 5. Coex-
isting different chaotic attractors or other combinations of coex-
istence including chaos and limit cycles are identified from the
asymmetric plots. This is mainly because that the polarity balance
depends on the slide polarity converter and the reversal of two
other variables as well. Furthermore, any other mismatch in the slide
polarity converter leads to asymmetric coexistence. For F,(z) = |z|
— 14, F,(2) = F5(2) = |z| — 15, the coexisting asymmetric attrac-
tors are shown in Fig. 6. In this case, two attractors have dif-
ferent Lyapunov exponents and Kaplan-Yorke dimensions, which
are LE; =(0.0481, 0, —5.5382), Dky; =2.0087 and LE,=(0.0059,

15 40
—1C=(0,0,16) —1€=(0,0,16)
10 —1C=(0,0,-8) 30 1C=(0,0,-8)
5 20!
> 0
-5
-10
(a),

FIG. 3. Coexisting attractors of sys-
tem (3) with conditional rotational symme-
trywhena=b=0.2,c=5.7, and F1(2)
= F,(2) = F3(2) = |z| — 15 in the: (a)
x-y plane and (b) x-z plane.

10 15
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0, —5.1412), Dy, =2.0011 for the green and red attractors,
respectively.

IV. POLARITY BALANCE RECONSTRUCTION BY JOINT
MODIFICATION

A. Polarity balance from a slide polarity converter and
a signum function

As demonstrated in Ref. 11, the change in the polarity induced
by a slide polarity converter can be canceled by the extra signum
function. By this means, Rossler system (1) can also be transformed
to have different regimes of symmetry. Without loss of general-
ity, we can transform system (3) into reflection symmetry accord-
ing to the dimensions x or z, rotational symmetry according to x
and y, and inversion symmetry, and the corresponding equations
are Egs. (4)-(7). Here, the introduced slide polarity converters are
flx) = |x| — di, g0) =yl — dp, h(z) =|z| — d5, d; =10, d, =12, and
d;=0. When a=b=0.2 and c=5.7, all of the attractors are dou-
bled in their own patterns of symmetry in the derived systems,
as shown in Fig. 7. Here, three different constants are chosen for
separating doubled attractors. Since the original attractor stays in
positive z-space, there is no requirement of offset boosting for attrac-
tor doubling. To compare different regimes of symmetry, basins of

FIG. 4. Basins of attraction of the coexisting attractors on the x-y plane (z=0)
insystem (3)witha=b=0.2,c=5.7,and F1(2) = F,(z) = F3(2) = |z| — 15.

04 FIG. 5. Lyapunov exponents and bifur-

(a) b cation diagram of system (3) witha =0.2,
¢=57, and Fi(2) = F(2) = F3(2)

15 = |z| — 15, when b varies in [0.1, 0.4]:
3 ‘ ‘ (@)IC=(0,0,16) and (b) IC=(0, 0, —8).

- -0.1 &
5| ;
02 | —LE1]] 10} ST
0 —LE2 e B, R
034 0.2 0.3 04 A 0.2 0.3 0.4
b (b) b
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5! 20}
> 0
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M5 10 5 0 5 10 15 “M15 10 5 0 5 10 15

X X
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FIG. 7. Coexisting attractors in
Egs. (4)-(7) with (a, b, ¢)=(0.2, 0.2,
5.7): (a) in Eq. (4), IC=(10.003, 0.02,
0.02) is red, and IC=(—10.003, 0.02,
0.02) is green; (b) in Eq. (5), IC =(0.003,
0.02, 0.02) is red, and IC=(0.003,
0.02, —0.02) is green; (c) in Eq. (6),
IC=(10.003, 12.02, 0.02) is red, and
IC=(—10.003, —12.02, 0.02) is green;
and (d) in Eq. (7), IC=(10.003, 12.02,
0.02)is red, and IC = (—10.003, —12.02,
—0.02) is green.

FIG. 8. Basins of attraction for the coexisting attractors: (a)
the x-y plane (z = 12) for system (4)witha=b = 0.2, c=5.7,
and f(x) = |x| — 10and (b) the y~z plane (x = 0) for system (5)
witha=b=0.2,c=5.7, and h(z) = |z|.
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307

20|
u‘>f’ g 107 < PS > /\PXR ] FIG.9. Polarity switching and recovery in
a nested slide polarity converter: (a) f(x)

0f A > 1 and(b)g(y).
-10 | (b)
-50 0 50 -50 0 50
X y

attraction for systems (4) and (5) are shown in Fig. 8. All black
lines are also cross sections of the attractors, and white regions are
unbounded orbits. It is thus clear that the basins of attraction are
consistent with the corresponding structure of symmetry and con-
ditional symmetry. The symmetry nesting and composition can also
be conducted according to the theory proposed in Ref. 11,

x = sgn(x)(—y — 2),
y=f(x) +ay, (4)
z="b—cz+ flw)z,

x=—y—h(2),
y=x+ay, (5)
z = sgn(z)(b — ch(z) + xh(2)),

x = sgn(x)(—g(y) — 2),
y = sgn(» (f(x) + ag(y), (6)
z="b—cz+ fx)z,

25 -
20

FIG. 10. Coexisting attractors in system (8) witha=10.2, b=0.2, c=5.7, and
9(y)=1ly| — 25| — 15, where IC = (0.003, 40.02, 0.02) is red and IC = (0.003,
—9.98, 0.02) is green.

x = sgn(x)(—g(y) — h(2)),
y = sgn(n)(f(x) + ag(y)), ?)
z = sgn(z)(b — ch(z) + flx)h(2)).

B. Polarity balance from the mutually nested slide
polarity converters

However, the polarity reversal produced by the slide polarity
converter can be shielded by itself. Let us consider a slide polar-
ity converter with the dimension x, flx) = |x| - a, which raises the
polarity switching (PS) and breaks the polarity balance, which in
turn calls for extra internal or external polarity recovery (PR). Polar-
ity recovery comes from three paths: original variable inversion,
polarity adapter, or slide polarity converter. The first two cases have
been demonstrated in the above sections, where the newly produced
polarity imbalance from offset boosting recovers immediately. In
fact, the creator of polarity imbalance can also be a solver. Consid-
ering the nested slide polarity converter, fx)=||x| — 30| —15 and

20

20 60

40 -20 ¢
X 60 -40 Y

FIG. 11. Coexisting attractors for system (9) witha=0.2, b=0.2, c=5.7, and
9(y) = |ly| — 25| — 15, f(x) = ||x| — 30| — 15, where (45.003, 40.02, 0.02) is
red, (—14.997,40.02, 0.02) is green, (—14.997, —9.98, 0.02) is blue, and (45.003,
—9.98, 0.02) is pink.
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100

X 60 .40 Y

FIG. 12. Coexisting attractors in system (10) witha=0.2, b=0.2, c=5.7, and
9(y) = |ly| — 25| — 15, f(x) = ||x| — 30| — 15, and h(z)=||z| — 35| — 5, where
(45.003,40.02, 40.02) is red, (—14.997, 40.02, —29.98) is cyan, (—14.997, 40.02,
40.02) is green, (45.003, —9.98, —29.98) is yellow, (—14.997, —9.98, 40.02) is
blue, (45.003, 40.02, —29.98) is black, (—14.997, —9.98, —29.98) is pink, and
(45.003, —9.98, 40.02) is azure blue.

g = ||yl — 25| — 15, the process of polarity switching and recovery
can be clearly seen in Fig. 9.

Generally speaking, a substitution is associated with all the
same variables in an equation, while local substitution produces
the substitution with a function on the right-hand side of an
equation. Like the local substitution for producing conditional sym-
metry, in the following, local substitution can also be applied for
producing coexisting attractors. Taking a local substitution with
) = [1x] — 30| — 15, g(y) = |Iy] — 25| — 15, and h(z)=I|z| — 35| - 5,
the offset-boosted coexisting attractors appear in systems (8)-(10)
when new balances of polarity are established, as shown in
Figs. 10-12,

x=—gy) -2
y=x+agQy), (8)
z=>b—cz+ xz,

scitation.org/journal/cha

x=—g(y) -z
¥ = fx) + ag(y), )
z=b—cz+f(x)z,

x=—gy) — h(2),
¥y = flx) + agy), (10)
z=b— ch(z) + f()h(z).

The basins of attraction for coexisting attractors in sys-
tems (9) and (10) are shown in Fig. 13. For system (10), only
four of the eight attractors projected onto the x-y plane are
visible. The other four are hidden behind those with the same
x and y but different z. In Fig. 13(b), the basins for four of
the eight attractors are plotted on the hemisphere given by
z=502+ \/ 2750 — (x — 15.003)* — (y — 15.02)* using only the
positive square root. The other hemisphere is similar. Black lines are
those of cross sections of the captured attractors, and white regions
mean unbounded orbits. As predicted, the strategy of polarity bal-
ance determines the structure of the basin of attraction. Comparing
Figs. 4 and 13 with Fig. 8, it is true that the nested slide polar-
ity converter results in an intertwined fractal structure rather than
a simple folded structure. But the basin structure remains elegant
symmetry, and therefore it does not destroy the coexisting dou-
bled bifurcations. As shown in Fig. 14, for system (8) when a =0.2,
c=5.7,8(y) =|ly| — 25| — 15, and b varies in [0.1, 0.4], two identical
bifurcations show up independently, which proves that any of other
solutions in parameter space are exactly doubled by the nested slide
polarity converter.

In fact, the nesting of the slide polarity converter can be intro-
duced in any dimensions. As shown in Fig. 15, for system (8)
when g(y) =||||y] — 70| — 22| — 25| — 15, four coexisting attractors
appear in dimension y. In some chaotic systems, the nesting of the
slide polarity converter interacts with the internal polarity rever-
sal, producing pairs of attractors with conditional symmetry. When
Fy(2) = Fy(2) = F3(2) = F(z) = ||z| — 100] — 50 are chosen in sys-
tem (3), four coexisting attractors with conditional symmetry are
produced, as shown in Fig. 16.

gof[ T T T T T T T T T T T T T T°71 gof[ T T T T T T T TT

FIG. 13. Basins of attraction for the coexisting attractors
on the x-y plane: (a) cross section z=5 for system (8)
with  a=b=02, c¢=57,  f(x)=]x|] —30]—15,
and  g(y)=|ly|—25/—15, (b) cross  section

2=502-+1/2750 — (x— 15003 — (y — 16.02°  for

system (9) with a=b=0.2, c=5.7, f(x)=||x] — 30| — 15,
9(y) = llyl — 25| — 15, and h(z)=||z| — 35| — 5.

Chaos 30, 063144 (2020); doi: 10.1063/5.0007668
Published under license by AIP Publishing.

30, 063144-7


https://aip.scitation.org/journal/cha

Chaos ARTICLE

0.1
o Y U
0 =
I'_Illl-o'1 ................................ >E-
| 1 U P
—LE1
—LE2
034 0.2
b
(a)
0.1 : :
0 M
3
m_o_1 ................................................. >E_
0.2
—LE1
05l LE2
034 0.2 0.3 0.4 0.1 02 03 0.4
b b
(b)
15 25
10} 20}
5/ 15
» N
o 10
5! 5
) | — 0 (b) :
-50 15( -50 0 50 100 150
Y
200 200
150} 150}
100} 100}
50} 50}
N
N ol o
-50} -50}
-100 -100}
W@ ] ™Moy
05 10 5 0 5 10 15 15 10 -5 0 5 10 15
X Y

scitation.org/journal/cha

FIG. 14. Lyapunov exponents and bifur-
cation diagram of system (8) with a=10.2,
c=5.7,andg(y) =||y| — 25| — 15, when b
varies in [0.1, 0.4]: (a) IC=(0.003, 40.02,
0.02) and (b) IC=(0.003, —9.98, 0.02).

FIG. 15. Coexisting attractors of sys-
tem (8) with a=b=02, ¢=5.7, and
g(y) = Illy| =70]—22|—25|— 15, where
(0.003, 132.02, 0.02) is red, (0.003, 82.02,
0.02) is green, (0.003, —7.98, 0.02) is
blue, and (0.003, —57.98, 0.02) is yellow
in the: (a) y—x plane and (b) y-z plane.

FIG. 16. Coexisting pairs of chaotic
attractors  with  rotational  conditional
symmetry in system (3) a=b=0.2,
c=57, and Fi(2) = F(2) = F3(2)
= ||z| —100| — 50 in the: (a) x-z plane
and (b) y-z plane.

Chaos 30, 063144 (2020); doi: 10.1063/5.0007668
Published under license by AIP Publishing.

30, 063144-8


https://aip.scitation.org/journal/cha

Chaos

V. CONCLUSIONS AND DISCUSSION

The chaotic Rossler system provides a unique structure for
symmetry switching based on its flexible polarity balance. Internal
polarity revision and extra polarity compensation (from a signum
function) or shielding (by an absolute value function) provide two
dominant approaches for balancing disrupted polarity. For a sym-
metrical structure, there is more flexibility for attractor doubling
since the polarity balance is restored by the reversal of variable,
which can further resort to the polarity revision or compensa-
tion instead. Therefore, the self-reproduced chaotic attractors are
of conditional symmetry or become exactly the same under the
polarity balance. Different approaches repeat the attractors, dividing
the basins of attraction, which provides sufficient choices when an
attractor with desired orientation is needed for chaos-based security
communication. Also note that when any of the parameters change
or the original model loses chaos, the polarity balance is still nec-
essary for attractor self-reproduction. In this case, the coexisting
reproduced attractors are periodic or fix points.
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