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Equilibria are a class of attractors that host inherent stability in a dynamic system. Infinite
number of equilibria and chaos sometimes coexist in a system with some connections. Hidden
chaotic attractors exist independent of any equilibria rather than being excited by them. How-
ever, the equilibria can modify, distort, eliminate, or even instead coexist with the chaotic
attractor depending on the distance between the equilibria and chaotic attractor. In this paper,
chaotic systems with infinitely many equilibria are considered and explored. Extra surfaces of
equilibria are introduced into the chaotic flows, showing that a chaotic system can maintain its
basic dynamics if the newly added equilibria do not intersect the original attractor. The offset-
boostable plane of equilibria rescales the frequency of the chaotic oscillation with an almost
linearly modified largest Lyapunov exponent or conversely drives the system into periodic oscil-
lation, even ending in a divergent state. Furthermore, additional infinite number of equilibria
or even a solid space of equilibria are safely nested into the chaotic system without destroying
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the original dynamics, which provides an alternate permanent location for a dynamical system.
A circuit simulation agrees with the numerical calculation.

Keywords : Chaotic attractor; infinite equilibria; offset boosting.

1. Introduction

Equilibrium points play an important role in non-
linear dynamical systems, which drive the system
into various states. However, it appears that chaotic
attractors can be independent of the equilibria in
the case of a hidden attractor [Leonov & Kuznetsov,
2013a; Leonov et al., 2011, 2012, 2015; Zhang &
Wang, 2019a]. Chaos exists in dynamical systems
with no equilibria [Zhou et al., 2018; Jafari &
Sprott, 2013a; Maaita et al., 2015; Akgul et al.,
2016; Jafari et al., 2016a], with only stable equi-
libria [Molaie & Jafari, 2013; Wang & Chen, 2013;
Deng & Wang, 2019; Li & Sprott, 2013; Yang &
Chen, 2008], with line equilibria [Ma et al., 2015; Li
et al., 2014; Jafari & Sprott, 2013b; Li & Sprott,
2014; Li et al., 2015b], with planes of equilibria
[Ekmekci & Rockwell, 2010; Bao et al., 2017; Jafari
et al., 2016b; Li & Sprott, 2017; Macbeath, 1965],
or even with any number of equilibria [Wang &
Chen, 2013]. Even when unstable equilibria exist,
the initial condition in the neighborhood of the
equilibria may instead lead to an alternate third
chaotic state [Li et al., 2017a; Li et al., 2015a]. All
of the chaotic attractors identified in the above cases
are hidden attractors [Leonov & Kuznetsov, 2013b;
Leonov et al., 2015; Zhang & Wang, 2019a]. These
hidden chaotic attractors share a common feature
in that their basins of attraction do not cover or
cross the neighborhood of the existing equilibria.
Furthermore, chaos can coexist with infinitely many
equilibrium points when a periodic function is
introduced to construct infinitely many attrac-
tors based on initial-condition-based offset boosting
[Kuznetsov et al., 2013; Bao et al., 2016; Li et al.,
2018b; Lai & Chen, 2016; Zhang & Wang, 2019b].

Chaotic systems with surfaces of equilibria have
various mechanisms, some of which are induced by
dimension redundancy [Bao et al., 2017], a precon-
straint [Jafari et al., 2016b], or even time rescal-
ing [Li & Sprott, 2017]. In fact, function-based time
rescaling produces a mixed effect of frequency mod-
ification and bifurcation control when the surfaces
of equilibria are introduced by a function. Chaotic
systems with surfaces of equilibria have other

possibilities for hosting infinitely many equilibrium
points, including other types of surfaces, lines of
equilibria, and even a solid space of equilibria if
they do not intersect or conflict with the previ-
ously existing attractors. In this paper, from the
newly found chaotic flows with surfaces of equilibria
[Jafari et al., 2016c], additional cases with infinitely
many equilibrium points are derived and explored
when new functions are introduced. In Sec. 2, the
derived chaotic systems with surfaces of equilibria
are listed with a basic dynamical analysis. In Sec. 3,
from a systematic bifurcation analysis, it is shown
that the newly introduced functions cause a time
rescaling, and the fundamental dynamics of those
cases with infinitely many equilibria depend on the
core system rather than the newly attached equilib-
ria. Electrical circuit simulation described in Sec. 4
confirms the findings from numerical simulation. A
discussion and conclusion are presented in the last
section.

2. Chaotic Systems with Infinite
Equilibria

Based on the newly found simplest chaotic flows
with surfaces of equilibria [Jafari et al., 2016c], addi-
tional surfaces are considered to introduce extra
equilibria, as shown in Table 1. Here, to employ
a compatible differential equation, the function fi0

represents the original flows proposed in the ref-
erence [Jafari et al., 2016c], while fij are the func-
tions added to construct other chaotic systems with
new surfaces of equilibria. The Lyapunov exponents
and Kaplan–Yorke dimensions are calculated from
initial conditions close to the attractor, which are
close to those of the original chaotic systems. In the
reference [Jafari et al., 2016c], an exhaustive com-
puter search was performed to seek elegant dissipa-
tive cases for which the largest Lyapunov exponent
is greater than 0.001, where the simplest candidates
for the surface f(x, y, z) are simple planes (a single
plane, two orthogonal planes or even three orthog-
onal planes) or other standard quadrics (ellipsoids,
hyperboloids, and paraboloids). In Table 1, we show
that different equilibria can be introduced into the
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Table 1. Chaotic systems with surfaces of equilibria.

Cases System Structure Introduced Functions Surfaces of Equilibria LEs DKY (x0, y0, z0)

ES1

ẋ = fij × (y)

ẏ = fij × (z)

ż = fij × (−x + ay2 − xz)

f10 = x (ES1a) (0, y, z)

0.0071

0

−1.0864

2.0065

6

0

−1

a = 1.54 f11 = 1 + x2 − y2 (ES1b) y2 − x2 = 1

0.0394

0

−6.0477

2.0065

f12 = z + x2 + y2 (ES1c) x2 + y2 = −z

0.0427

0

−6.4770

2.0066

f13 = z + x2 − y2 (ES1d) y2 − x2 = z

0.0183

0

−2.8219

2.0065

ES2

ẋ = fij × (y)

ẏ = fij × (−x + az)

ż = fij × (by2 − xz)

f20 = x (ES2a) (0, y, z)

0.0644

0

−0.8279

2.0778

0.15

0

0.8

a = 1

b = 3
f21 = z (ES2b) (x, y, 0)

0.0830

0

−1.0662

2.0778

f22 = xz (ES2c)
(0, y, z)

(x, y, 0)

0.045417

0

−0.58463

2.0777

f23 = 1 + x2 − y2 (ES2d) y2 − x2 = 1

0.16203

0

−0.2083

2.0778

f24 = z + x2 + y2 (ES2e) x2 + y2 = −z

0.18284

0

−2.3481

2.0779

f25 = z + x2 − y2 (ES2f) y2 − x2 = z

0.1398

0

−1.7931

2.0779

ES3

ẋ = fij × (y2 + axy)

ẏ = fij × (−z)

ż = fij × (b + xy)

f30 = x (ES3a) (0, y, z)

0.0661

0

−1.664

2.0397

0.87

0.4

0

a = 2

b = 1

f31 = 34.81 − x2 − y2 − z2

(ES3b)
x2 + y2 + z2 = 34.81

2.3995

0

−60.4616

2.0397

f32 = 30.25 − x2 − y2

(ES3c)
x2 + y2 = 30.25

2.1569

0

−54.3899

2.0397

f33 = 1 + x2 − 0.3460y2

(ES3d)
0.3460y2 − x2 = 1

0.0640

0

−1.6154

2.0397

(Continued)
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Table 1. (Continued)

Cases System Structure Introduced Functions Surfaces of Equilibria LEs DKY (x0, y0, z0)

ES4

ẋ = fij × (−y)

ẏ = fij × (x + z)

ż = fij × (ay2 + xz − b)

f40 = z (ES4a) (x, y, 0)

0.0560

0

−1.0855

2.0516

0

0.46

0.7

a = 2

b = 0.35

f41 = z + x2 + y2

(ES4b)
x2 + y2 = −z

0.2330

0

−4.3048

2.0518

ES5

ẋ = fij × (−az)

ẏ = fij × (b + z2 − xy)

ż = fij × (x2 − xy)

f50 = xy (ES5a)
(0, y, z)

(x, 0, z)

0.1242

0

−1.8356

2.0677

1

1.44

0

a = 0.4

b = 1
f51 = x (ES5b) (0, y, z)

0.0987

0

−1.4578

2.0677

f52 = y (ES5c) (x, 0, z)

0.2613

0

−3.8683

2.0675

f53 = z + x2 + y2

(ES5d)
x2 + y2 = −z

0.2613

0

−3.8683

2.0675

f54 = x2 + y2 + z2 − 1

(ES5e)
x2 + y2 + z2 = 1

0.1819

0

−2.6959

2.0675

f55 = x2 + y2 − 1

(ES5f)
x2 + y2 = 1

0.1642

0

−2.4219

2.0678

ES6

ẋ = fij × (y + ayz)

ẏ = fij × (bz + y2 + cz2)

ż = fij × (x2 − y2)

f60 = xyz (ES6a)

(0, y, z)

(x, 0, z)

(x, y, 0)

0.0294

0

−0.4051

2.0725

1

−1.3

−1

a = 2

b = 8

c = 7

f61 = x (ES6b) (0, y, z)

0.1867

0

−2.5693

2.0727

f62 = −y (ES6c) (x, 0, z)

0.2327

0

−3.2026

2.0727

f63 = −z (ES6d) (x, y, 0)

0.0385

0

−0.5311

2.0725

f64 = −xy (ES6e)
(0, y, z)

(x, 0, z)

0.2080

0

−2.8649

2.0726

f65 = z + x2 + y2

(ES6f)
x2 + y2 = −z

2.3535

0

−1.3994

2.0726
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Table 1. (Continued)

Cases System Structure Introduced Functions Surfaces of Equilibria LEs DKY (x0, y0, z0)

ES7

ẋ = fij × (ay)

ẏ = fij × (xz)

ż = fij × (−z − x2 − byz)

f70 = 1 − x2 − y2 − z2

(ES7a)
x2 + y2 + z2 = 1

0.0113

0

−0.9501

2.0119

0

0.1

0

a = 0.4

b = 6

f71 = 1 − x2 − y2

(ES7b)
x2 + y2 = 1

0.0115

0

−0.9654

2.0119

f72 = 1 + x2 − y2

(ES7c)
y2 − x2 = 1

0.0124

0

−1.0416

2.0119

ES8

ẋ = fij × (az + y2)

ẏ = fij × (−y + bx2)

ż = fij × (−xy)

f80 = 1 − x2 − y2 − z2

(ES8a)
x2 + y2 + z2 = 1

0.0323

0

−0.9552

2.0338

0.24

0.2

0

a = 1

b = 5

f81 = 1 − x2 − y2

(ES8b)
x2 + y2 = 1

0.0330

0

−0.9733

2.0339

f82 = 1 + x2 − y2

(ES8c)
y2 − x2 = 1

0.0348

0

−1.0261

2.0339

ES9

ẋ = fij × (y2 − axy)

ẏ = fij × (xz)

ż = fij × (1 − by2)

f90 = 1 − x2 − y2

(ES9a)
x2 + y2 = 1

0.0388

0

−1.2078

2.0321

0.06

0

1

a = 5

b = 7

f91 = x

(ES9b)
(0, y, z)

0.0028

0

−0.0875

2.0318

f92 = 1 + x2 − y2

(ES9c)
y2 − x2 = 1

0.0399

0

−1.2485

2.0320

ES10

ẋ = fij × (a − z2)

ẏ = fij × (xz)

ż = fij × (y + bxz)

f10,0 = 1 + x2 − y2

(ES10a)
y2 − x2 = 1

0.0420

0

−0.2330

2.1883

0

−0.08

0

a = 0.1

b = 1

f10,1 = 1 − x2 − y2 − z2

(ES10b)
x2 + y2 + z2 = 1

0.0316

0

−0.1671

2.1891

f10,2 = 1 − x2 − y2

(ES10c)
x2 + y2 = 1

0.0364

0

−0.1938

2.1879

(Continued)
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Table 1. (Continued)

Cases System Structure Introduced Functions Surfaces of Equilibria LEs DKY (x0, y0, z0)

ES11

ẋ = fij × (yz)

ẏ = fij × (x − axz)

ż = fij × (x − bz2)

f11,0 = z + x2 + y2

(ES11a)
x2 + y2 = −z

0.0283

0

−0.6171

2.0458

0.46

0

0.8

a = 1

b = 0.6

f11,1 = 4.84 − x2 − y2 − z2

(ES11b)
x2 + y2 + z2 = 4.84

0.1033

0

−2.2565

2.0458

f11,2 = 4 − x2 − y2

(ES11c)
x2 + y2 = 4

0.1047

0

−2.2891

2.0457

f11,3 = 1 + x2 − 0.25y2

(ES11d)
0.25y2 − x2 = 1

0.0375

0

−0.8180

2.0458

ES12

ẋ = fij × (yz)

ẏ = fij × (−ax)

ż = fij × (−z + by2 + xz)

f12,0 = z + x2 − y2

(ES11a)
y2 − x2 = z

0.0068

0

−0.4998

2.0135

1

0

1

a = 0.1

b = 6

f12,1 = 1 + x2 − y2

(ES12b)
y2 − x2 = 1

0.0165

0

−1.2226

2.0135

f12,2 = z + x2 + y2

(ES12c)
x2 + y2 = −z

0.0080

0

−0.5907

2.0136

same core structure, including simple planes, a
sphere, a circular cylinder, a hyperbolic cylinder,
a paraboloid, and a saddle surface. All of the intro-
duced equilibria exist outside the attractor without
influencing the basic dynamics. For systems ES3b,
ES3c, ES11b, and ES11c, the minimum radii are
5.9, 5.5, 2.2 and 2, respectively. The corresponding
typical attractors with their corresponding equi-
libria are solved by the fourth-order Runge–Kutta
method based on Matlab and are shown in Fig. 1.
The time step is 0.005, and the data is 64-bit float-
ing point number.

In fact, different equilibria can coexist in the
same system if they do not intersect the attractor.
For example, for the case of ES5, the newly intro-
duced functions can be:

f56 = x(z + x2 + y2),

f57 = y(z + x2 + y2),

f58 = x(1 + x2 − 0.3906y2),

f59 = y(1 + x2 − 0.3906y2),

f5,10 = (z + x2 + y2)(1 + x2 − 0.3906y2),

f5,11 = xy(z + x2 + y2),

f5,12 = xy(1 + x2 − 0.3906y2),

f5,13 = x(z + x2 + y2)(1 + x2 − 0.3906y2),

f5,14 = y(z + x2 + y2)(1 + x2 − 0.3906y2) and

f5,15 = xy(z + x2 + y2)(1 + x2 − 0.3906y2);

correspondingly, the derived systems share more
than one surface of equilibria, as shown in Fig. 2.
Offset boosting [Li et al., 2019; Li et al., 2018a; Li
et al., 2017b] can be applied to the original system
to shift the attractor in case it touches the surface
of equilibria.

In an extreme scenario, the expanded equilibria
can form a solid space. Taking ES8 as an example;
except for the isolated original equilibrium point,
new functions can be introduced to embed infinitely
many surfaces of equilibria and even a solid space.
As shown in Table 2, the new function ϕ(x) can
be defined to introduce the equilibria of the solid

2130014-6
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 1. Typical phase trajectories of the cases in Table 1. (a) ES1b, (b) ES2f, (c) ES3c, (d) ES4b, (e) ES5d, (f) ES6e, (g) ES7b,
(h) ES8c, (i) ES9c, (j) ES10b, (k) ES11d, and (l) ES12b.

2130014-7
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Coexisting surfaces of equilibria and chaos in the case of ES5: (a) f5,10, (b) f5,11, (c) f5,12, (d) f5,13, (e) f5,14 and
(f) f5,15.

Table 2. Chaotic flows induced from ES8 with a solid space of equilibria.

Case System Structure Introduced Functions Surfaces of Equilibria (x0, y0, z0)

ES8 ẋ = fij × (az + y2)

ẏ = fij × (−y + bx2)
f83 = ϕ[−(x + 0.6)] (ES8d) x ≤ −0.6

0.24

0.2

ż = fij × (−xy) f84 = ϕ[0.04 − (x + 0.6)2 − y2 − (z + 0.6)2]

(ES8e)

(x + 0.6)2 + y2 + (z + 0.6)2

≤ 0.04

0

a = 1

b = 5
f85 = ϕ[0.04 − (x + 0.6)2 − y2] (ES8f) (x + 0.6)2 + y2 ≤ 0.04

f86 = ϕ[−(1 + x2 − y2)] (ES8g) y2 − x2 ≥ 1

2130014-8
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(a) (b)

(c) (d)

Fig. 3. Coexisting solid space of equilibria and chaos in the case of ES8: (a) ES8d, (b) ES8e, (c) ES8f and (d) ES8g.

space,

ϕ(x) =

{
0, x ≥ 0,

1, x < 0.
(1)

Therefore, a cubic, sphere, cylinder, or even a hyper-
boloid space of equilibria can be planted into the
body of chaotic systems, whose phase trajectories
and equilibria are shown in Fig. 3. Furthermore,
if fij = 1, all of the core systems share the same
shapes of the chaotic attractor.

Similarly, lines of equilibria can be introduced
in chaotic systems. Taking ES5 as an example,⎧⎪⎪⎨

⎪⎪⎩
ẋ = x × (−az)

ẏ = y × (b + z2 − xy)

ż = y × (x2 − xy)

(2)

(a) (b)

Fig. 4. Coexisting lines of equilibria and chaos in the derived system of ES5: (a) System (2) and (b) system (3).

⎧⎪⎪⎨
⎪⎪⎩

ẋ = sgn[x(x + 1)] × (−az)

ẏ = sgn[y(y + 1)] × (b + z2 − xy)

ż = sgn[y(y + 1)] × (x2 − xy).

(3)

The corresponding phase trajectories are shown in
Fig. 4. Here, in the above systems (2) and (3), the
newly introduced functions in three dimensions are
different, and usually the signum function is used
to remove the amplitude information [Li & Sprott,
2017]. Surfaces of equilibria can be introduced to
the chaotic flows with a line of equilibria [Jafari &
Sprott, 2013b]. Taking LE1 as an example,⎧⎪⎪⎨

⎪⎪⎩
ẋ = gi × (y),

ẏ = gi × (−x + yz),

ż = gi × (−x − axy − bxz).

(4)

2130014-9
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(a) (b)

(c) (d)

Fig. 5. Coexisting line and surface of equilibria and chaos of system (4): (a) Surface x = 1, (b) surface x = ±1, (c) surface
x2 + y2 = 1 and (d) surface y2 − x2 = 1.

When gi = 1 − x, 1 − x2, x2 + y2 − 1, 1 + x2 − y2,
coexisting surfaces of equilibria are introduced in
the chaotic flow with a line of equilibria, as shown
in Fig. 5.

3. Frequency Control and
Dynamical Analysis

As conjectured, the derived flows with different
types of equilibria exhibit almost the same funda-
mental dynamical behavior. The introduced equi-
libria result from the unified functions in all dimen-
sions. Generally, for a dynamical system such as

Ẋ = F (X), X = (x1, x2, . . . , xn)T,

F = (f1, f2, . . . , fn)T,

Ẋ = (ẋ1, ẋ2, . . . , ẋn)T

=
(

dx1

dt
,
dx2

dt
, . . . ,

dxn

dt

)T

,

a positive real constant c in the differential equa-
tion Ẋ = cF (X) only introduces a time scaling
since the transformation t → t

c can restore the
equation to its original form. The function in the
equation Ẋ = g(X)F (X) produces a surface of
equilibria g(X) = 0 and simultaneously modifies

the frequency and revises the dynamics accordingly.
Taking system ES5 as an example, the projection of
the chaotic attractor is located in the first quadrant
in the x–y plane; therefore, we introduce a flexible
offset-boostable plane in the core structure ES5 as
follows: ⎧⎪⎪⎨

⎪⎪⎩
ẋ = (x − d) × (−az)

ẏ = (x − d) × (b + z2 − xy)

ż = (x − d) × (x2 − xy).

(5)

When the distance between the attractor and the
plane x = d varies, the frequency of the chaotic
oscillation is nearly linearly rescaled, and finally, the
system ends in a limit cycle as shown in Fig. 6.
Another plane y = d produces the same influence
as shown in Fig. 7 when it is introduced in the core
system ES5:⎧⎪⎪⎨

⎪⎪⎩
ẋ = (y − d) × (−az),

ẏ = (y − d) × (b + z2 − xy),

ż = (y − d) × (x2 − xy).

(6)

The effect of the surface of equilibria can be clearly
identified by the offset d in the function f = x −
d. When the offset d increases from −2 to 0.8,

2130014-10
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Fig. 6. Dynamical evolution of system (5) under the plane of x = d: (a) Lyapunov exponents and (b) bifurcation diagram.

Fig. 7. Dynamical evolution of system (6) under the plane of y = d: (a) Lyapunov exponents and (b) bifurcation diagram.

systems (5) and (6) remain dominantly chaotic with
linearly rescaled Lyapunov exponents and finally
end in a periodic oscillation. A larger Lyapunov
exponent indicates a high frequency as shown in

Fig. 8. The effect of the frequency rescaling can be
enlarged by the power function. When f = x, x2, x3,
the frequency is modified in the positive correla-
tion shown in Fig. 9. The offset in the z-dimension

Fig. 8. Phase trajectory of system (5) with a = 0.4 and b = 1 in the x − y plane: (a) d = −10 and (b) d = 0.1.

Fig. 9. Frequency rescaled by power functions in system ES5 with a = 0.4 and b = 1: (a) Chaotic signal of x(t) and
(b) frequency spectrum of x(t).
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Fig. 10. Frequency rescaled by other offset-boosted planes in system ES5 with a = 0.4 and b = 1: (a) Chaotic signal of x(t)
and (b) frequency spectrum of x(t).

(a) (b)

Fig. 11. Lyapunov exponents and bifurcation diagram of chaotic system ES5a.

(a) (b)

(c) (d)

Fig. 12. Simultaneously appearing periodic oscillations in systems ES5b and ES5d.
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can also produce surfaces of equilibria when f =
|z|+ 3, z + 3, (z + 3)2, providing frequency rescaling
as shown in Fig. 10.

For the fixed surfaces of equilibria, taking ES5
as an example, all of the systems exhibit a simi-
lar period-doubling bifurcation as shown in Fig. 11.
Specifically, limit cycles appear almost in the same
periodic windows. Period-1, period-2, period-4, and
period-3 cycles appear simultaneously in systems
ES5b and ES5d as shown in Fig. 12. Furthermore,
it is found that many of these cases with surfaces of
equilibria exhibit the same fundamental dynamics
when the equilibria are removed.

4. Circuit Implementation

To verify the chaotic flows with surfaces of equilib-
ria, electrical circuit simulations were carried out as
follows. Taking system ES5d as an example, a cir-
cuit schematic is designed as shown in Fig. 13, and
the circuit equation is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = f × R2

R4C1

(
− 1

R3
z

)
,

ẏ = f × R7

R9C2

(
1

R11
+

1
R8

z2 − 1
R12

xy

)
,

ż = f × R14

R16C3

(
1

R15
x2 − 1

R18
xy

)
,

f = R20

(
R1

R5R22
x2 +

R6

R10R21
y2 +

R13

R17R19
z

)
.

(7)

Here, the parameters are set as R1 = R3 = R4 =
R5 = R6 = R7 = R8 = R9 = R10 = R11 =
R12 = R13 = R14 = R15 = R16 = R17 = R18 =
R19 = R20 = R21 = R22 = 10kΩ, R2 = 4kΩ and
C1 = C2 = C3 = 100nF. Small capacitor values
are selected for suitable time rescaling. The initial
values are 1 V, 1.44 V, and 0 V, respectively. All the
operational amplifiers are LM741H, which are pow-
ered with VCC = 15V and VEE = −15V. For the

Fig. 13. Circuit schematic of system ES5d.
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Fig. 14. Phase trajectory of system ES5d on the oscilloscope: (a) x–y plane and (b) y–z plane.

multiplier, the scaling parameters are A1 = A2 =
A3 = A4 = A5 = 1V/V. The newly introduced
equilibria become a “wall” of multipliers, which
introduces feedback into the core structure. In fact,
this wall of equilibria does not influence the attrac-
tor while providing a new parasitic position for the
system when the initial conditions are present. The

phase trajectory of system ES5d on the oscilloscope
is shown in Fig. 14.

To observe the influence of the distance between
the surface of equilibria and the attractor, an
offset-boostable plane is introduced in the core
system ES5. The corresponding circuit schematic
is designed as shown in Fig. 15, and the circuit

Fig. 15. Circuit schematic of system (5).
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Fig. 16. Phase trajectory of system (5) on the simulated oscilloscope in the x–y plane: (a) R19 = R20 = R22 = 1kΩ, and
Vdd = −10 and (b) R19 = R20 = R22 = 100 Ω, and Vdd = 0.1.

equation is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = f × R2

R4C1

(
− 1

R3
z

)
,

ẏ = f × R7

R9C2

(
1

R11
+

1
R8

z2 − 1
R12

xy

)
,

ż = f × R14

R16C3

(
1

R15
x2 − 1

R18
xy

)
,

f = R20

(
R1

R5R22
x − R1

R5R19
Vdd

)
.

(8)

Here, the parameters are set as R1 = R3 = R4 =
R5 = R6 = R7 = R8 = R9 = R10 = R11 =
R12 = R13 = R14 = R15 = R16 = R17 =
R18 = R19 = R22 = 10kΩ, R2 = 4kΩ and
C1 = C2 = C3 = 100nF. Select R19 = R20 = R22 =
100Ω and R19 = R20 = R22 = 1kΩ for different
offset-boosting. As shown in Fig. 8, it is clear that
the frequency of the chaotic attractor of system (5)
is modified accordingly. A larger offset produces a
higher frequency as shown in Fig. 16.

5. Conclusion and Discussion

Chaotic systems with infinitely many equilibria are
discussed in this paper. Specifically, extra functions
are introduced in the differential equation in a uni-
fied or slightly different manner to construct lines,
surfaces, or even a solid space of equilibria. Follow-
ing this method, additional cases of chaotic sys-
tems with surfaces, lines or even a solid space of
equilibria are constructed based on the previously

found elegant flows. In fact, if the surface does not
intersect the existing attractor in the core struc-
ture, any desired equilibria of a particular type can
be introduced into the core structure. Note that for
considering dynamical systems generated by ODEs,
their limit objects (like attractors) and limit quan-
tities (like LEs and DKY ) should be investigated,
and one should study the existence and uniqueness
of ODE solutions and extensibility of these solu-
tions over time to positive infinity [Kuznetsov et al.,
2018; Leonov et al., 2015]. In this work many of
those induced systems are artificially constructed
with continuous yet nonsmooth functions in their
right-hand side (such as the function in Eq. (1), or
the absolute value function) and even discontinu-
ous signum functions, further investigation on Lip-
schitz condition or the boundedness of solutions is
suggested in the future for ensuring that the ODEs
indeed generate dynamical systems.

Offset-boosting makes the surface farther from
or closer to the attractor in the core system, pro-
viding time rescaling, which influences the fre-
quency without changing the basic dynamics.
Newly equipped surfaces of equilibria can be intro-
duced and superimposed, which provides an addi-
tional parameter to vary. A bifurcation analysis
shows that the fundamental dynamics are almost
independent of the newly introduced infinite equi-
libria in some circumstances. Dynamical maps
or basins of attraction analysis are suggested to
enhance this claim for further exploration. The cir-
cuit simulations agree with the numerical simula-
tion. The possible practical application of the devel-
oped systems is that in such systems those newly
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equipped surfaces of equilibria can be applied for
controlling the system to various stabilities.
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