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Abstract The many examples in the previous chapters should leave no doubt that
hidden attractors are common in nonlinear dynamical systems. Remarkably, hidden
attractors can have basins that fill the entire space with every initial condition on the
attractor. Two such examples are shown here.

1 Introduction

The many examples in the previous chapters should leave no doubt that hidden
attractors are common in nonlinear dynamical systems. Previous authors have echoed
the claim that they are hard to find because there is no systematic method to identify
initial conditions in their basin of attraction.

Thus it is fitting to temper those claims with some examples of hidden attractors
that are globally attracting. Not only is every initial condition in their basin of
attraction, but every initial condition lies on the attractor, and thus they could hardly
be less hidden. Furthermore, such attractors have been known and studied long before
the recent hoopla about hidden attractors, and they have other remarkable properties
to be recounted here.

2 Conservative Nosé—Hoover System

The interest in chaotic systems whose orbit visits the entire state space (called
ergodic) arose long ago from a quest among molecular dynamicists to find a simple
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596 J. C. Sprott

dynamical system that would model the behavior of a harmonic oscillator in thermal
equilibrium with a heat bath at a constant temperature. Prior to the modern chaos
era, it had been assumed that any such model would need many variables. The first
breakthrough came in 1984 when Shuichi Nosé found a Hamiltonian system with
four variables consistent with the necessary condition that the probability distribution
functions of position and momentum should be Gaussian [1] as expected for Gibbs’
canonical ensemble [2].

The following year, Bill Hoover showed that Nosé system could be reduced to a
three-dimensional form with the same properties, now known as the Nosé—Hoover
system [3]:

X=y
y=-x—2zy ()
=y —1.

This system was independently discovered in a search for three-dimensional
chaotic flows with five terms and two quadratic nonlinearities, and thus it is also
known as the Sprott A system [4, 5] and has been widely studied. It is the simplest
in a large class of systems with similar properties [6].

Absent the zy term, this system is a simple harmonic oscillator with x playing
the role of position, and y is its canonically conjugate momentum. The zy term
represents a nonlinear damping (for positive z) or anti-damping (for negative z) with
z controlled by the z equation such that the damping averages to zero when the mean
square momentum (y?) is unity. Thus z acts as a thermostat, controlling the average
energy of the chaotic oscillator, but allowing it to fluctuate as desired to model an
oscillator in equilibrium with a heat bath [7].

System (1) is unusual because it has no equilibrium points, but neither does it
have an attractor because it is derived from a Hamiltonian [8] in which the fourth
variable is a slave of the other three and thus does not influence the dynamics.
Hence the system is conservative with the missing energy in the hidden variable,
and the oscillator is isothermal rather than isoenergetic. Such systems are called
nonuniformly conservative [9], and they share many of the properties of conventional
conservative systems.

The third variable allows the system to oscillate chaotically with a chaotic sea
whose Lyapunov exponents are (0.0139,0,-0.0139) and that stretches to infinity in all
three dimensions, but that encloses an intricate set of nested and intertwined invariant
tori on which the orbits are quasiperiodic with Lyapunov exponents of (0, 0, 0). All
orbits, both in the chaotic sea and on the tori, repeatedly cross the z = 0 plane, which
allows the dynamics to be completely characterized by examining a cross section
of the orbit in that plane. In particular, quasiperiodic orbits embedded anywhere in
the chaotic sea will appear as ‘holes’ in that cross section of the flow. The system is
time-reversal invariant under the transformation (x; y; z; ) — (x; —y; —z; —t) as
expected for a conservative system.
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Globally Attracting Hidden Attractors 597

3 Dissipative Nosé—Hoover System

There are many ways to add dissipation to a thermostatted oscillator without intro-
ducing equilibrium points and thus producing a hidden attractor. For example, the
constant term in the z equation of system (1) can be replaced by a function f (x) that
is everywhere positive:

X=y
}';:—x—zy 2)
g=y"— fx).

Physically, this corresponds to a harmonic oscillator in a heat bath with a one-
dimensional temperature gradient given by %.

This system with f(x) = 1 4 ¢ tanh(x) (corresponding to a temperature that
varies from 1 —eatx = —ootol4¢eatx = oo with a maximum gradient of &
atx = 0) was originally proposed and studied by Posch and Hoover in 1997 [10].
For ¢ = 0.38 it has a hidden chaotic attractor that extends to infinity in all three
dimensions and encloses a region in the vicinity of the origin with conservative tori
and quasiperiodic orbits as shown in Fig. 1 [11]. The chaotic attractor fills the entirety
of its basin of attraction, but with a highly nonuniform measure.

The attractor has Lyapunov exponents of (0.0019, 0, -0.0020) and a Kaplan—Yorke
dimension of 2.945. Thus it differs markedly from essentially all the other chaotic
attractors in this book for three-dimensional autonomous flows whose Kaplan—Yorke
dimensions are only slightly greater than 2.0. In fact, the attractor is multifractal with
a capacity dimension of exactly 3.0, and it stretches to infinity in all three dimensions
but with a rapidly decreasing measure. Furthermore, as ¢ is decreased, the Kaplan—
Yorke dimension further increases until it reaches a value of 3.0 for ¢ = 0, where the
standard Nosé—Hoover system (1) with a chaotic sea is recovered.

As a consequence, its basin of attraction fills the entire space except for a finite
region in the vicinity of the origin wherein tori with quasiperiodic orbits reside. This is
an example of a Class 1b basin of attraction [12]. Although it is not a global attractor,
a randomly chosen initial condition not too close to the origin is overwhelmingly
likely to lie in the basin, and it will lie on the attractor, although usually in a region
rarely visited by the orbit.

Remarkably, this dissipative system is time-reversal invariant, just like its con-
servative counterpart. The system has a repellor that overlaps the attractor, and that
becomes an attractor when time is reversed. The attractor-repellor pair as shown by
a portion of the orbits in Fig. 2 have only an imperceptible shift in the z-direction of
(z) ~ #+1.2 x 10~* with (x) ~ —0.6855and (y) = 0.

al 509810_1_En_25_Chapter [Z] TYPESET [__]DISK [_]LE [Z] CP Disp.:30/9/2021 Pages: xxx Layout: T1-Standard




Editor Proof

92

93

94

95

96

97

98

99

100

101

102

103

598 J. C. Sprott
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Fig. 1 Cross-section of the orbits in the z =0 plane for system (2) with f(x) = 1 +
0.38 tanh(x). Blue indicates the regions with conservative tori and quasiperiodic orbits, and yellow
indicates the infinite basin of attraction of the dissipative hidden chaotic attractor shown in black

[11]

4 Buncha System

As if the previous case were not remarkable enough, there are variants of the Nosé—
Hoover system that are dissipative and ergodic with a hidden attractor that is the
entirety of the three-dimensional state space. Probably the simplest and most elegant
example is a reduced form of a general class of system proposed and studied by
Buncha Munmuangsaen and collaborators [13] and given by

X=y
y=—x—azy 3
z=|y|—1.

Like the Nosé—Hoover case, this system has a single bifurcation parameter a that
can be put in any of the five terms, and that completely characterizes the system
through a one-dimensional bifurcation diagram as shown in Fig.3. For a = 0 the
system is a simple conservative harmonic oscillator with an amplitude that depends
only on the initial conditions.
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-5 5

Fig. 2 An orbit on the hidden attractor (in red) and on the corresponding repellor (in green) for
system (2) with f(x) = 1 + 0.38 tanh(x)

For a > 0, there are three distinct regions with bifurcations in the vicinity of
a = 0.9 and a = 2.1. For a less than about 0.9, the dynamic is dominated by nested
invariant tori with conservative quasiperiodic orbits but surrounded by a dissipative
region with limit cycles and/or strange attractors. In the range of a between about
0.9 and 2.1, there is a conservative region containing nested tori that are linked by
a symmetric pair of dissipative limit cycles and a long-duration chaotic transient
whose orbit eventually collapses onto one of the limit cycles with a riddled basin of
attraction. At a ~ 2.0, the limit cycles merge into one large limit cycle at a ~ 2.07
that gives birth to a strange attractor surrounding the tori. As a is increased further,
the tori shrink and eventually vanish at a ~ 3.07, leaving only dissipative regions
with a single strange attractor that fills all of space.

The Kaplan—Yorke dimension of the attractor continues to increase with increasing
a, reaching a maximum of about 2.9924 at a = 7 before slowly decreasing, except
for narrow periodic windows in the vicinity of a = 2.28, 3.78, 4.00, and 6.00, as well
as other values that are unresolved in Fig.3. In these periodic windows, there is a
long-duration chaotic transient.

Although system (3) exhibits a variety of unusual behaviors, our interest here is in
the regime where there is a single ergodic strange attractor that fills all of space and
thus is technically “hidden” because the system has no equilibrium points. For that
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LEs|_

Dky

Fig. 3 Lyapunov exponents (LEs), Kaplan—Yorke dimension (Dky), and the local maxima of x
(Xm) as a function of the bifurcation parameter a in (3) over the range 0 < a < 10

purpose, we focus on the case a = 5 for which the Lyapunov exponents are (0.1610, 0,
—0.1633), the Kaplan—Yorke dimension is 2.9858, and the orbit is as shown in Fig. 4.
In this plot, the colors indicate the value of the local largest Lyapunov exponent with
red positive and blue negative. While the attractor appears to be bounded, it has a
fuzzy edge, and after a sufficiently long time the orbit will come arbitrarily close to
every point in the three-dimensional state space.
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Fig. 4 An orbit on the ergodic strange attractor for system (3) with @ = 5. The colors indicate the
value of the local largest Lyapunov exponent with red positive and blue negative

To confirm that the system is ergodic with no embedded tori and quasiperiodic
orbits, it suffices to examine a cross section of the flow at z = 0. Figure 5 shows such
a plot. Other than the nullclines at y = %1, where the orbit is tangent to the plane,
there are no holes that would indicate a lack of ergodicity. A single orbit eventually
visits every point in the plane, and every initial condition produces the same plot.
Said differently, the attractor is globally attracting with a Class la basin of attraction
[12], and the attractor fills the whole of its basin.

The local largest Lyapunov exponent has a complicated structure as evidenced
by the variations in color. Furthermore, the equations are time-reversible under the
transformation (x, y, z,¢) — (x, —y, —z, —t) just like the previous cases. When
time is reversed, the attractor becomes a repellor that looks identical to the attractor.
Thus there exists a symmetric strange attractor-repellor pair that is coincident, except
for a tiny offset in the z direction of (z) = =£0.0023, and they exchange roles when
time is reversed.

The attractor and repellor are both multifractal with a capacity dimension of
exactly 3.0 but with a highly nonuniform measure that is far from the Gaussian that
characterizes the usual conservative ergodic harmonic oscillator. The probability
distribution functions for the three variables, along with the first six even moments
of the distribution, are shown in Fig. 6. None of the distributions have a sharp cutoff,
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s X ' 5

Fig. 5 Cross section of the ergodic strange attractor in the z = 0 plane for system (3) witha = 5.
The colors indicate the value of the local largest Lyapunov exponent with red positive and blue
negative

but rather they have long tails that extend to infinity in all directions. Hence the
attractor and its basin fill the whole of the state space.

5 Signum Thermostat Dissipative System

Finally, we consider a dissipative chaotic system that is fully ergodic with a measure
that more nearly approximates a Gaussian with a hidden global attractor and that is
presented here for the first time. This system is a variant of the dissipative Nosé—
Hoover system (2) but with the zy term replaced by 2sgn(z)y and is called the signum
thermostat [ 14]. To preserve symmetry in the x probability distribution, f(x) is taken
as f(x) = exp(—ex?) to give

XxX=y

y=—x—2sgn(z)y “4)
z = y? — exp(—ex?).
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mean = -0.0001
<X°2> = 2.022997
<X"4> = 13.04606
<X"6> = 144.3578
Px <X"8>= 2246.985
<X™10> = 45092.07

mean = -0.0000
<Y"2>= 1.758489
<Y"4> = 18.56948
<Y"6> = 484.0653
Py <Y"8>= 208634.2
<Y*10> = 1287875

mean = 0.0005
<Z~2>= .1731403
<Z~4> = 9.122292E-2
<7°6> = 7.8B54513E-2
Pz <Z°8>= 9.192535E-2
<Z"10>= 1343795

-5 Value 5

Fig. 6 Probability distribution functions of the ergodic strange attractor for system (3) witha = 5.
The black curves show a Gaussian distribution with a variance (second moment) of 1.0

Physically, this corresponds to a harmonic oscillator in a heat bath with its highest
temperature at x = 0 and that approaches absolute zero at x = £o00. Since f(x) > 0
for all x, there is no equilibrium point, and so any attractor for the system is hidden
by definition.

For ¢ = 0 (constant temperature), exp(—sxz) = 1, and the system is nonuni-
formly conservative and ergodic with a chaotic sea whose probability distribution is
given exactly by P(x, y, z) = exp(—x2/2 — y*>/2 — 2|z|)/27. For & small and pos-
itive, the system is dissipative and ergodic with a strange attractor whose probability
distribution departs only slightly from the case with ¢ = 0.

For example, ¢ = 0.1 gives the cross section plot at z = 0 shown in Fig. 7. Aside
from the nullclines at y = = exp(—x2/20), there is no indication of quasiperiodic
holes in the plot. The colors show that the local largest Lyapunov exponent has a
considerable structure as is typical of these systems.

The evidence that the system is dissipative with a chaotic attractor comes from
the Lyapunov exponents whose values are (0.03544, 0, —0.3636), the Kaplan—Yorke
dimension whose value is 2.9746, and the time-averaged dissipation of { 2sgn(z)) ~
9.2 x 1073, The attractor is multifractal with a capacity dimension of 3.0.
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-5

-5 5

Fig.7 Cross section of the ergodic strange attractor in the z = 0 plane for system (4) with e = 0.1.
The colors indicate the value of the local largest Lyapunov exponent with red positive and blue
negative

Like the previous systems, this case is time-reversal invariant under the trans-
formation (x, y, z,t) - (x,—y, —z, —t) with an attractor-repellor pair that fully
overlap with only a tiny offset in the z-direction. The attractor has a global Class la
basin of attraction [12], and the attractor fills the entire basin.

Figure 8 shows the small departure of the probability distribution functions from
the ones with & = 0. The dissipative oscillator spends slightly less time in the vicinity
of the origin where it is heated strongly as well as far from the origin where it is
cooled, and relatively more time at intermediate values. Although the tails of the
distributions are suppressed, they still extend to infinity in all directions so that every
initial condition is on the attractor.

Smaller values of e give distributions even closer to a Gaussian and Kaplan—
Yorke dimensions that approach ever closer to the limit of 3.0. The system remains
ergodic for & up to about 3.4 except for periodic windows with long duration chaotic
transients, whereupon the chaotic attractor is replaced by a globally attracting hidden
limit cycle. This is not surprising since the temperature is an amplitude parameter
that does not affect the dynamic in the conservative constant-temperature case with
a signum thermostat. However, the probability distributions become increasingly
peaked at intermediate values of x and y as € increases.
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mean = 0.0001
<X"2> = 9552201
<X*4>= 2.406303
<X"6>= 9.493769
Px <X"8>= 5065826
<X~10> = 340.8341

/
mean = -0.0000
<Y"2>= 9151133
<Y"4> = 2.392437
<Y"6>= 10.57155
Py <Y"8>= 654948
<Y*10> = 517.3326

y -

mean = -0.0041
<Z"2>= .3648507
<Z°4>= 7914215
<Z76> = 4.06921
Pz <Z"8>= 36.19641
<Z"10>= 4822163

-5 Value 5

Fig.8 Probability distribution functions of the ergodic strange attractor for system (4) withe = 0.1.
The black curves show the distributions for ¢ = 0

6 Summary and Conclusions

The Nosé-Hoover system is almost certainly the simplest example of a nonuni-
formly conservative chaotic flow without equilibria, but the chaotic sea coexists with
regions of quasiperiodicity. It is the simplest example of a wide class of thermostatted
oscillators, which are time-reversal invariant in accordance with Newton’s laws and
that exhibit aspects of thermodynamics and statistical mechanics such as a Gaussian
probability distribution function. It is possible to eliminate the quasiperiodic regions
and obtain systems that are fully ergodic with the orbit visiting every point in space
as desired for a realistic physical model.

There are various ways to add dissipation to such systems and produce strange
attractors that are hidden and that fill almost the entire state space, typically with
a finite region that is occupied by tori with conservative quasiperiodic orbits. Most
remarkably, it is also possible to modify the dissipative systems in such a way as to
make them fully ergodic with a multifractal strange attractor that is globally attracting
and fills the whole of space and yet satisfies the definition of being hidden. Two such
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examples were given here. These systems may be more realistic models of physical
phenomena than are the purely mathematical models with hidden attractors that
constitute most of the other examples in this book.
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