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In this note, we define four main categories of conservative flows: (a) those in which the dissi-
pation is identically zero, (b) those in which the dissipation depends on the state of the system
and is zero on average as a consequence of the orbits being bounded, (c) those in which the
dissipation depends on the state of the system and is zero on average, but for which the orbit
need not be bounded and a different proof is required, and (d) those in which the dissipation
depends on the initial conditions and cannot be determined from the equations alone. We intro-
duce a new 3D conservative jerk flow to serve as an example of the first two categories and show
what might be the simplest examples for each category. Also, we categorize some of the existing
known systems according to these definitions.
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1. Introduction

Conservative dynamical systems are ones in which
the phase space volume is conserved and the flow
is incompressible according to Liouville’s theorem
[Lichtenberg & Lieberman, 2013]. Such systems
have a long history rooted in the study of celestial
mechanics and were formalized by Euler, Lagrange,
Hamilton, Jacobi, and others two centuries ago.
Although they do not have attractors, conservative
systems can exhibit different dynamical behaviors
including chaos [Sprott, 2010].

A general dynamical system is given by

v1 = ẋ1 = f1(x1, x2, . . . , xn),

v2 = ẋ2 = f2(x1, x2, . . . , xn),

...

vn = ẋn = fn(x1, x2, . . . , xn),

(1)

where x1, x2, . . . , xn are dynamical (state) variables,
v1, v2, . . . , vn are the time derivatives of the state
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(velocities), and f1(X), f2(X), . . . , fn(X) are the
evolution equations (velocity vectors). If the diver-
gence (trace of the Jacobian) of a system is identi-
cally zero for all values of the state, then the system
is conservative, while if the trace is constant and
nonzero, it is not conservative. If the divergence is
negative, the system is dissipative, and if it is posi-
tive, the system is unbounded. However, the diver-
gence sometimes depends on the state, in which case
the time-average of the divergence along the trajec-
tory determines whether the system is conservative
or not (by being zero or nonzero). Such systems
are globally conservative but have regions of state
space that are dissipative and other regions that are
anti-dissipative. Heidel and Zhang call such systems
nonuniformly conservative [Heidel & Zhang, 2007].

In this note, we describe four different cate-
gories of conservative dynamical systems. Two of
these categories (A and C) are well-known, while
the other two (Categories B and D) are less familiar.
We provide what may be the simplest examples for
each of the four types in 3D systems with quadratic
nonlinearities.

2. Four Categories of Conservative
Flows

2.1. Category A

If the divergence (trace of the Jacobian) of a system
is identically zero, then the system is conserva-
tive. All the many Hamiltonian systems that have
been studied since the time of Newton are of this
type. Such systems are 2N -dimensional, where N
is the number of degrees of freedom. However, it
is also possible for three-dimensional systems to be
conservative, and such cases are of special interest
because they represent the simplest cases that can
have chaotic solutions according to the Poincaré–
Bendixson theorem.

Consider the following 3D jerk system, so-called
because in a mechanical system, ż would represent
the time derivative of the acceleration:

ẋ = y,

ẏ = z,

ż = x(1 + x) − ay + byz.

(2)

The local divergence is (∂ẋ
∂x + ∂ẏ

∂y + ∂ż
∂z = by),

and the system is uniformly conservative if b = 0,
in which case all orbits are unbounded for less than
about 1.6. Heidel and Zhang have proved that a

system of this form cannot have chaotic solutions
[Heidel & Zhang, 2007]. However, for larger values
of a, there is a periodic orbit surrounded by a set of
nested tori on which the orbits are quasi-periodic.
For example, a = 5 gives the system

ẋ = y, ẏ = z, ż = x(1 + x) − 5y (3)

whose cross-section in the z = 0 plane for various
initial conditions is shown in Fig. 1. The toroidal
region is bounded by the two equilibria at (−1, 0, 0)
and (0, 0, 0) shown as blue dots. The former equi-
librium has eigenvalues (−0.1923, 0.0962±2.2340i),
and the latter has eigenvalues (0.1923,−0.0962 ±
2.2340i). Thus both equilibria are unstable saddle
foci, and they lie on the boundary of the bounded
region.

A typical torus with initial conditions (−0.5,
1, 0) is shown in Fig. 2. For a conservative torus in
3D, all three Lyapunov exponents are zero: (0, 0, 0).
However, there is a local expansion and contrac-
tion of the flow as if it were contained in a pipe
of varying diameter, causing the local value of the
largest Lyapunov exponent to vary between about
±2.3 with an average value that is accurately zero.
This is shown in the plot using a red color to indi-
cate regions where the local Lyapunov exponent is
positive and blue where it is negative.

Fig. 1. Cross-section of the nested tori in the z = 0 plane
for system (3). The toroidal region is bounded by the two
equilibria at (−1, 0, 0) and (0, 0, 0) shown as blue dots, outside
of which all orbits are unbounded.
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Fig. 2. Different projections of a typical torus for system (3) with initial conditions (−0.5, 1, 0).

2.2. Category B

If Eq. (1) has a bounded solution, the average veloc-
ity (viaverage = vi = ∆xi

∆t of all the states should
be zero. We denote the average value of a vari-
able S(t) as 〈S(t)〉 which is defined as 〈S(t)〉 =

limt→∞
R t
t0

S(t)dt

t−t0
. Using proof by contradiction, sup-

pose that one of the variables (xi) in Eq. (1) has a
nonzero average velocity 〈vi〉 = a �= 0. In this case,
since xi(t) =

∫ t
t0

vi(t)dt ≈ at + xi(t0) and t → ∞,
this variable drifts to infinity by the passage of time,
and this is inconsistent with the assumption that
the solutions are bounded.

Consider system (2) when b �= 0. Then the aver-
age divergence is 〈∂ẋ

∂x + ∂ẏ
∂y + ∂ż

∂z 〉 = b〈y〉. Since the
average value of ẋ, ẏ, and ż should be zero (as condi-
tions for having a bounded solution), which means
〈z〉 = 0, 〈y〉 = 0, and 〈x(1 + x)− ay + byz〉 = 0, the
divergence will be zero on average. An example of
such a nonuniformly conservative system with a = 5
and b = 1 is

ẋ = y, ẏ = z, ż = x(1 + x) − 5y + yz. (4)

Like system (3), system (4) has quasi-periodic solu-
tions, but apparently not chaotic ones. A cross-
section of the nested tori in the z = 0 plane is

shown in Fig. 3. The plot is just a distorted ver-
sion of the one in Fig. 1. The equilibria and their
eigenvalues are identical to those for system (3), and
the dynamics are similar with a Lyapunov expo-
nent spectrum of (0, 0, 0) throughout the bounded
region. However, the Lyapunov exponents converge
slowly for orbits that pass near the equilibria, pro-
ducing long-duration transient chaos.

A typical torus with initial conditions (−0.5,
1, 0) as shown in Fig. 4 is just a slightly distorted
version of Fig. 2. As before, the local largest Lya-
punov exponent varies between about ±4.6 with an
average value that converges slowly to zero. Larger
values of b cause further distortion of the tori until
they are destroyed around b = 3 and all orbits are
unbounded.

2.3. Category C

The oldest example of a nonuniformly conservative
chaotic flow is the Sprott case A system [Sprott,
1994]:

ẋ = y, ẏ = −x + yz, ż = 1 − ay2. (5)

This is an important system since it is a special
case of the Nosé–Hoover thermostatted oscillator
[Posch et al., 1986; Hoover, 1995] which models a
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Fig. 3. Cross-section of the nested tori in the z = 0 plane
for system (4). The toroidal region is bounded by the two
equilibria at (−1, 0, 0) and (0, 0, 0) shown as blue dots, outside
of which all orbits are unbounded.

simple harmonic oscillator in contact with an infi-
nite heat bath with a temperature 〈y2〉 = 1/a and
represents a starting point for molecular dynamic
simulations. System (6) has solutions that lie on a
nested set of intricate tori surrounded by a chaotic
sea as shown in Fig. 5 for a = 1. The chaotic sea
stretches to infinity but with a Gaussian measure,
and orbits in the sea have Lyapunov exponents of
(0.0139, 0,−0.0139) and a Kaplan–Yorke dimension
of 3.0. A typical torus with initial conditions (0, 1, 0)
surrounded by an orbit in the chaotic sea with ini-
tial conditions (0, 5, 0) is shown in Fig. 6. The local
largest Lyapunov exponent varies between about
±1.2 on the torus and between about ±4.0 for the
portion of the chaotic orbit shown in the figure. The
large variance of the local Lyapunov exponents is
typical of chaotic systems and is one reason the
Lyapunov exponents converge so slowly, and why
it is often difficult to distinguish quasi-periodicity
from weak chaos. The system is unbounded in the
sense that orbits will eventually reach points arbi-
trarily far from the origin where the local Lyapunov
exponent is enormous, but those orbits eventually

Fig. 4. Different projections of a typical torus for system (4) with initial conditions (−0.5, 1, 0).
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Fig. 5. Cross-section of the nested tori in the z = 0 plane
for system (5) with a = 1 and the surrounding chaotic
sea.

return to the vicinity of the origin. This system is
also unusual in that there are no equilibrium points,
which ensures that all solutions oscillate endlessly.

The local divergence of this system is (∂ẋ
∂x +

∂ẏ
∂y + ∂ż

∂z = z), and both solutions (quasi-periodic and
chaotic) have 〈z〉 = 0, which means the system is
nonuniformly conservative. However, the vanishing
of 〈z〉 cannot be discerned by a simple inspection
of the equations as was the case for category B.
The proof that the system is conservative relies on
a nonobvious transformation of variables [Hoover
et al., 2016c] x → u, y → v/s, z → −w, where s is
a new time scaling variable conjugate to w and gov-
erned by ṡ = ws. The result is a four-dimensional
uniformly conservative system with a Hamiltonian

H =
1
2

(
su2 +

v2

s
+ s ln(s2) + sw2

)

whose time derivative is zero provided u̇ = v
s , v̇ =

−us, ẇ = v2

s2 − 1, and H = 0 as one can verify
[Dettmann & Morriss, 1997].

Fig. 6. Different projections of a typical torus for system (5) with a = 1 and initial conditions (0, 1, 0) and the surrounding
chaotic sea with initial conditions (0, 5, 0).
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Fig. 7. Cross-section of the nested tori in the z = 0 plane
for system (6) with a = 4 and b = 1 and the surrounding
strange attractor.

2.4. Category D

One can modify system (5) by the addition of a
term bx2, analogous to the byz term that was added
to system (3) to obtain system (4). Physically, this
corresponds to assuming a temperature dependence
that is a parabolic function of position x in the
Nosé–Hoover oscillator, 〈y2〉 = 1+ x2

a . The result-
ing equations are

ẋ = y, ẏ = −x + yz, ż = 1 − ay2 + bx2. (6)

This simple three-dimensional time-reversible sys-
tem of ODEs with a = 4 and b = 1 has been intro-
duced before [Sprott, 2015a] and has the unusual
property that it exhibits conservative behavior for
some initial conditions and dissipative behavior for
others. The conservative regime has quasi-periodic
orbits whose amplitude depends on the initial con-
ditions, while the dissipative regime is chaotic. Thus
a strange attractor coexists with an infinite set of
nested invariant tori in the state space. Both solu-
tions are time-reversible under the transformation

Fig. 8. Different projections of a typical torus for system (6) with a = 4 and b = 1 for initial conditions (0, 2, 0) and the
surrounding strange attractor with initial conditions (1, 1.2, 0).
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(x, y, z, t) → (x,−y,−z,−t), and the attractor has
a corresponding repellor that becomes an attractor
when time is reversed. The attractor is hidden in
the sense that it cannot be found by starting from
the vicinity of an equilibrium point since no such
points exist for system (6).

The dissipation is given by the trace of the
Jacobian matrix, Tr(J) = 〈z〉. The surprise is that
the time-average of z is negative (−0.0024) for some
initial conditions such as (0, 2, 0) and zero for oth-
ers such as (0, 1.2, 0). The first initial condition
gives a strange attractor with Lyapunov exponents
(0.0131, 0,−0.0155) and a Kaplan–Yorke dimension
of 2.8455, and the second initial condition gives
a torus with Lyapunov exponents (0, 0, 0) and a
dimension of 2.0. Figure 7 shows a cross-section of
the solutions in the z = 0 plane for various initial
conditions, and Fig. 8 shows a typical torus with
initial conditions (0, 2, 0) surrounded by the strange
attractor with initial conditions (1, 1.2, 0).

We are aware of only two other examples of
this type [Politi et al., 1986; Sprott, 2014] plus
variants of system (6) with different forms of the
temperature gradient [Patra et al., 2016], and we
are unaware of any proof that they are conserva-
tive. Any such proof would require consideration
of the initial conditions as well as the form of the
equations.

3. Discussion and Conclusions

While we believe the examples given here may be
the algebraically simplest 3D flows with quadratic
nonlinearities for each of the four categories of con-
servative systems, we do not mean to imply that
categories A and B can have only quasi-periodic
solutions while categories C and D are always
chaotic. Indeed, there are 3D category A chaotic
systems such as Thomas labyrinth chaos [Thomas,
1999] and 4D category A chaotic systems such as
the Hénon–Heiles system [Hénon & Heiles, 1964] as
well as 3D category C systems that have no quasi-
periodic solutions [Hoover et al., 2016b]. Further-
more, replacing the bx2 term in system (6) with
bx leads to a system with a limit cycle that coex-
ists with the conservative tori. The existence of
category B chaotic systems and category C purely
quasi-periodic systems remains an open question.
Finally, we do not wish to imply that all category C
systems have unbounded solutions, but only that
boundedness is not required to prove that they are
conservative. We have categorized some (and not

all) dynamical systems published in literature in the
Appendix.

In this note, we divided conservative flows into
four categories. The first category is flows in which
the dissipation is uniformly zero everywhere along
the orbit. The second category is flows in which the
dissipation depends on the state of the system and
is zero on average as a simple consequence of the
boundedness of the orbit and for which a simple
proof exists. The third category is flows in which the
dissipation depends on the state of the system and
is zero on average, but the proof requires a trans-
formation to a Hamiltonian system with the possi-
ble introduction of additional variables. The fourth
category is flows in which the dissipation depends
on the initial conditions and thus cannot be deter-
mined from the equations alone. Useful future work
would entail cataloging the many known examples
of conservative systems into these categories and
looking for possible new categories and additional
examples especially of categories B and D.
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Appendix

Some examples of systems A, A & C, B, C, and D
are given in Tables 1–5, respectively.

Table 1. Category A.

System Type Chaos Reference

1 ẋ = z2 + Ay

ẏ = x − z

ż = y

A • [Heidel & Zhang, 2007]

2 ẋ = yz + Ay

ẏ = ±x + z

ż = x

A • [Heidel & Zhang, 2007]
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Table 1. (Continued)

System Type Chaos Reference

3 ẋ = y + z

ẏ = −x + Az

ż = xy

A • [Heidel & Zhang, 2007]

4 ẋ = x + z

ẏ = −y + z

ż = xy

A • [Heidel & Zhang, 2007]

5 ẋ = y2 − z + A

ẏ = z

ż = x

A • [Heidel & Zhang, 2007]

6 ẋ = z2 + A

ẏ = x − z

ż = y

A • [Heidel & Zhang, 2007]

7 ẋ = yz + A

ẏ = x ± z

ż = x

A • [Sprott, 2010]

8 ẋ = y

ẏ = z

ż = −ay − bx + cos x − 1

A • [Sprott, 2010]

9 ẋ = y

ẏ = z

ż = −ay ± (|x| − 1)

A • [Sprott, 2010]

10 ẋ = y

ẏ = z

ż = −ay ± (x − x3)

A • [Sprott, 2010]

11 ẋ = y

ẏ = z

ż = −ay ± (x − sin x)

A • [Sprott, 2010]

12 ẋ = y

ẏ = z

ż = −ay ± x + x2

A • [Sprott, 2010]

13 ẋ = y

ẏ = z

ż = −ay ± bx − cos x + 1

A • [Sprott, 2010]

14 ẋ = y

ẏ = z

ż = −y + x2 − b

A • [Sprott, 1997]

(Continued)
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Table 1. (Continued)

System Type Chaos Reference

15 ẋ = y

ẏ = z

ż = −x2y + A(1 − x2)x

A • [Sprott, 1997]

16 ẋ = y

ẏ = z

ż = −0.2x(1 − x) − y

A • [Sprott, 1997]

17 ẋ = y

ẏ = sin 2z − x3

ż = 1

A • [Sprott, 2010]

18 ẋ = y

ẏ = sin 2z − x5

ż = 1

A • [Sprott, 2010]

19 ẋ = y

ẏ = sin 2z − x7

ż = 1

A • [Sprott, 2010]

20 ẋ = y

ẏ = sin 2z − x9

ż = 1

A • [Sprott, 2010]

21 ẋ = y

ẏ = sin 2z − x11

ż = 1

A • [Sprott, 2010]

22 ẋ = y

ẏ = sin 2z − xp|x|
ż = 1

A • [Sprott, 2010]

23 ẋ = y

ẏ = sin 2z − x|x|
ż = 1

A • [Sprott, 2010]

24 ẋ = y

ẏ = sin z − x|x|3
ż = 1

A • [Sprott, 2010]

25 ẋ = y

ẏ = sin z − 0.2 sin x

ż = 1

A • [Sprott, 2010]

26 ẋ = y

ẏ = sin z − x + tan x

ż = 1

A • [Sprott, 2010]
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Table 1. (Continued)

System Type Chaos Reference

27 ẋ = y

ẏ = z

ż = −8y + |x| − 1

A • [Sprott, 2010]

28 ẋ = y

ẏ = z

ż = −4y + x(x2 − 1)

A • [Sprott, 2010]

29 ẋ = y

ẏ = z

ż = −5y + 2x − sin x

A • [Sprott, 2010]

30 ẋ = y

ẏ = z

ż = −9y + 3 − cos x

A • [Sprott, 2010]

31 ẋ = v

v̇ = y − sin x

ẏ = u

u̇ = −y

A • [Sprott, 2010]

32 ẋ = v

v̇ = y − sgn(x)

ẏ = u

u̇ = −sin y

A • [Sprott, 2010]

33 ẋ = v

v̇ = y − x3

ẏ = u

u̇ = −sin y

A • [Sprott, 2010]

34 ẋ = v

v̇ = y − sin x

ẏ = u

u̇ = −sin y

A • [Sprott, 2010]

35 ẋ = v

v̇ = y sin x

ẏ = u

u̇ = −sin y

A • [Sprott, 2010]

36 ẋ = v

v̇ = y − sgn(x)

ẏ = u

u̇ = −sgn(y)

A • [Sprott, 2010]

(Continued)
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Table 1. (Continued)

System Type Chaos Reference

37 ẋ = v

v̇ = y − x3

ẏ = u

u̇ = −sgn(y)

A • [Sprott, 2010]

38 ẋ = v

v̇ = y sin x

ẏ = u

u̇ = −sgn(y)

A • [Sprott, 2010]

39 ẋ = v

v̇ = y − sin x

ẏ = u

u̇ = −y3

A • [Sprott, 2010]

40 ẋ = v

v̇ = y − sgn(x)

ẏ = u

u̇ = −y3

A • [Sprott, 2010]

41 ẋ = v

v̇ = y − x3

ẏ = u

u̇ = −y3

A • [Sprott, 2010]

42 ẋ = v

v̇ = y sin x

ẏ = u

u̇ = −y3

A • [Sprott, 2010]

43 ẋ = v

v̇ = k(y − x) − sin x

ẏ = u

u̇ = k(x − y) − sin y

A • [Sprott, 2010]

44 ẋ = v

v̇ = y − x − sin x

ẏ = u

u̇ = x − y − sgn(y)

A • [Sprott, 2010]

45 ẋ = v

v̇ = y − x − sin x

ẏ = u

u̇ = x − y − y3

A • [Sprott, 2010]
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Table 1. (Continued)

System Type Chaos Reference

46 ẋ = v

v̇ = y − x − sgn(x)

ẏ = u

u̇ = x − y − sgn(x)

A • [Sprott, 2010]

47 ẋ = v

v̇ = y − x − sgn(x)

ẏ = u

u̇ = x − y − y3

A • [Sprott, 2010]

48 ẋ = v

v̇ = y − x − x3

ẏ = u

u̇ = x − y − y3

A • [Sprott, 2010]

49 ẋ = v

v̇ = yx

ẏ = u

u̇ = −x2 + 0.57y2

A • [Sprott, 2010]

50 ẋ = v

v̇ = y

ẏ = u

u̇ = −(1 + cos x)y − (1 − v2) sin x

A • [Sprott, 2010]

51 ẋ = v

v̇ = y

ẏ = u

u̇ = −6y + 1 − x2

A • [Sprott, 2010]

52 ẋ = v

v̇ = y

ẏ = u

u̇ = −8y + v2 − x

A • [Sprott, 2010]

53 ẋ = y

ẏ = z

ż = −y − x

„
x2

3
− c

«

A • [Sprott, 2010]

54 ẋ = y

ẏ = z

ż = −ay + x(x2 + y2 − b)

A • [Vaidyanathan et al., 2016]

55 ẋ = y

ẏ = z

ż = −0.2x(1 − x) − y + 0.01y2

A • [Vaidyanathan, 2016b]

(Continued)
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Table 1. (Continued)

System Type Chaos Reference

56 ẋ = y

v̇ = −x + 8.5(1 − x2)w + 0.5z

ż = w

ẇ = −x + 8.5(1 − z2)y + 0.5x

A • [Vaidyanathan, 2016a]

57 ẋ = yz

ẏ = xz

ż = −xy

A [Li & Sprott, 2014]

58 ẋ = sin y

ẏ = sin z

ż = sin x

A • [Sprott & Chlouverakis, 2007]

59 ẋ = tan y

v̇ = tan (z − x)

ż = tan w

ẇ = tan−z

A • [Sprott, 2010]

Table 2. Categories A & C.

System Hamiltonian Function Type Chaos Reference

60 ẋ =
y

z2

v̇ = −x

ż = w

ẇ =
y2

z3
− 1

z

H =
1

2

„
x2 +

y2

z2
+ ln(z2) + w2

«
A, C • [Hoover et al., 2016a]

61 ẋ = ayw

v̇ = xz

ż = −xy + bw

ẇ = −axy − bz

H =
1

2
(x2 + y2 + z2 + w2) A, C • [Cang et al., 2017]

62 ẋ = 1 + z2 − w2

v̇ = 2zw

ż = −1 + x2 − y2

ẇ = 2xy

H = L +
L3

3
+ M +

M3

3

L = x + iy

M = z + iw

A, C • [Jafari et al., 2016]

63 ẋ = v + ku

v̇ = −x3

ẏ = u + kv

u̇ = −y3

H =
1

2
(v2 + u2) +

1

4
(x4 + y4) + kvu A, C • [Sprott, 2010]
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Table 2. (Continued)

System Hamiltonian Function Type Chaos Reference

64 ẋ = v + kvu2

v̇ = −x

ẏ = u + kuv2

u̇ = −y

H =
1

2
(v2 + u2 + x2 + y2 + k(uv)2) A, C • [Sprott, 2010]

65 ẋ = v

v̇ = −(1 + ky2)x

ẏ = u

u̇ = −(1 + kx2)y

H =
1

2
(v2 + u2 + x2 + y2 + k(uv)2) A,C • [Sprott, 2010]

66 ẋ = 2v

v̇ = 2xy

ẏ = −2u

u̇ = 4y + x2

H = v2 − u2 − 2y2 − x2y A, C • [Sprott, 2010]

67 ẋ = v

v̇ = −x − 2xy

ẏ = u

u̇ = −y − x2 + y2

H =
1

2
(v2 + u2 + x2 + y2) + x2y − 1

3
y3 A, C • [Sprott, 2010]

Table 3. Category B.

System Type Chaos Reference

68 ẋ = y

ẏ = z

ż = −z2 − x2y − 0.25x

B • [Heidel & Zhang, 2007]

Table 4. Category C.

System Hamiltonian Function Type Chaos Reference

69 ẋ = cyw

ẏ = yz

ż = −y2 + dw

ẇ = −cxy − dz

H =
1

2
(x2 + y2 + z2 + w2) C • [Cang et al., 2017]

70 ẋ =
y

z

ẏ = −zx

ż = zw

ẇ =
y2

z2
− 1

H =
1

2

„
zx2 +

y2

z
+ z ln(z2) + zw2

«
C • [Dettmann & Morriss, 1997]

(Continued)
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Table 4. (Continued)

System Hamiltonian Function Type Chaos Reference

71 ẋ = y

ẏ = −x + yz

ż = 5 − |y|

C • [Munmuangsaen et al., 2015]

72 ẋ = y

ẏ = −x + yz

ż = 1 − x4

C • [Vaidyanathan & Pakiriswamy, 2015]

73 ẋ = 0.05y + xz

ẏ = −x + yz

ż = 1 − x2 − y2

C • [Vaidyanathan & Volos, 2015]

Table 5. Category D.

System Initial Condition Type Reference

74 ẋ = y + 2xy + xz

ẏ = 1 − 2x2 + yz

ż = x − x2 − y2

(1, 0, 0) (torus)

(2, 0, 0) (strange attractor)

D [Sprott, 2014]

75 ẋ = y

ẏ = −x − yz

ż = y2 − 1 − 0.42 tanh x

(−2.3, 0, 0) (torus)

(3.5, 0, 0) (torus)

(−2.7, 0, 0) (limit cycle)

D [Sprott et al., 2014]

76 ẋ = −yz

ẏ = (2x + y + z2)z

ż = x − x3

(−1,−1.5,−0.5) (torus)

(−1, 0,−1) (strange attractor)

D [Sprott, 2015b]
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