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Abstract: This work describes the simplest chaotic system with a hyperbolic sine nonlinearity, accompanied by analysis of Lya-
punov exponents, bifurcations, and stability. The corresponding simple chaotic circuit using only diodes and linear components is
designed and implemented. Finally, an application of the system to spread spectrum communication based on differential chaos
shift keying (DCSK) is presented. Since the hyperbolic sine is an odd function of its argument, the system is antisymmetric and
exhibits symmetry breaking where the attractors split or merge as some bifurcation parameter is changed. The proposed system
is especially simple both from the structure of the equations and in its electronic circuit realization. Compared with the traditional
DCSK scheme of a Chebyshev sequence, the system can reduce the bit error rate in the presence of noise.

1 Introduction

It is widely recognized that some systems of ordinary differen-
tial equations can exhibit chaos. Exploring new chaotic systems
has attracted the attention of many researchers[1–3]. Over the
years, there has been an ongoing interest in finding simple exam-
ples of chaos because these systems are easy to analyze and can
reduce computational complexity when they are used in engineering
applications[4–8].

It is known that nonlinearities play an important role in the design
and implementation of chaotic systems [9]. The nonlinearity in
Chua’s system is piecewise linear [10], and the Lorenz system has
multiplicative nonlinearities [11]. The hyperbolic sine nonlinearity
has rarely appeared in previous literature. This is because the expo-
nential function often causes divergence in numerical calculations
of chaos. In 2011, Sprott and Munmuangsaen proposed a chaotic
system with an exponential nonlinearity [12, 13]. However, it is not
a symmetrical system, and thus it cannot admit symmetry breaking
and the possibility that antisymmetric attractors will split or merge
as some bifurcation parameter is changed.

The quest for the simplest chaotic systems and circuits of vari-
ous types has been an active area of research for several decades,
and numerous candidates have been proposed [14–16]. There is an
ongoing debate over what is meant by “simplest.” In 2010, Piper
and Sprott proposed three kinds of simplicity, which are mathemat-
ical simplicity, circuit simplicity, and simplicity from a practical
standpoint [17]. From this perspective, many chaotic systems such
as non-autonomous circuits are not “simple” because they achieve
physical simplicity at the expense of analytic complexity, or vice
versa. Therefore, finding the simplest chaotic system is a challenging
task.

On the other hand, transient chaos has interesting features espe-
cially when the initial conditions are near the boundary of the basin
of attraction [18]. The distance between a strange attractor and the
boundary of its basin can decrease until they touch one another at
a critical value of the control parameter. At this point, the chaotic
attractor exhibits a crisis converting into an unstable manifold called
a chaotic saddle. Accordingly, the behavior of the system changes,
with the chaotic dynamics replaced by transient chaos. Since chaos
is useful in applications such as image encryption [19, 20], secure
communication[21], and liquid mixing [22], it is important to study
transient chaos.

Furthermore, chaos has some advantages in spread spectrum
communication systems [23]. For the past two decades, many

spread spectrum communication schemes have been proposed that
use chaotic signals. Among them, differential chaos shift keying
(DCSK) is robust and can effectively mask useful signals. Nev-
ertheless, a major limitation of conventional DCSK is its inferior
performance and capacity. The reference and information bearing
signals are corrupted by the channel noise, and a noisy reference
signal is correlated with a noisy information bearing signal at the
receiver. In recent years, many improved DCSK schemes have
been proposed to overcome this problem[24–26], but there is little
discussion about the bearing signals.

This paper focuses on the design and implementation of the sim-
plest chaotic system with a hyperbolic sine, and it overcomes the
problem of hyperbolic functions causing divergence in numerical
calculations. Compared with the traditional DCSK scheme using a
Chebyshev sequence, it can reduce the bit error rate (BER), which
make it attractive for spread spectrum communication in real world
applications.

2 Simplest chaotic system with a hyperbolic sine

The simplest chaotic system with a hyperbolic sine has the form

...
x + 0.75ẍ+ x+ 1.2× 10−6 sinh(

ẋ

0.026
) = 0 (1)

where the coefficients have been chosen to facilitate circuit imple-
mentation using diodes.

System (1) is a slight modification of the simplest chaotic system
with a quadratic nonlinearity [27] given by

...
X +AẌ +X ± Ẋ2 = 0 (2)

Zhang and Heidel have shown that all systems simpler than
Eq. (2) cannot exhibit chaos [28].

Therefore, Eq. (1) is almost surely the simplest chaotic system
with a hyperbolic sine nonlinearity. According to the simplicity crite-
ria of Piper and Sprott [17], the corresponding circuit is the simplest
chaotic circuit with a hyperbolic sine since the hyperbolic sine can
be implemented with two back-to-back diodes.

Because of the symmetry of the hyperbolic sine, the system has a
double-scroll chaotic attractor for initial conditions of (0.1, 0.1, 0.1)
as shown in Fig. 1.
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Fig. 1: Numerical and actual circuit state space plot in x-ẍ plane.

3 Analysis

3.1 Equilibrium, eigenvalues, and stability analysis

Equation (1) has a single equilibrium point given by

ẋ = 0

ẍ = 0
...
x = 0

(3)

The Jacobian matrix at the equilibrium is

J(s) =

 0 1 0
0 0 1
−1 0 −0.75

 (4)

whose eigenvalues are

λ1 =− 1.3221

λ2 =0.2860 + 0.8213i

λ3 =0.2860− 0.8213i

(5)

The dominant frequency of oscillation is expected to be f =
0.8213/2πRC = 1.30 kHz, which is in good agreement with the
experimental oscilloscope waveforms.

The eigenvectors of the equilibrium point (0, 0, 0) are

V =

 0.6553 0.6553 0.4151
0.1875− 0.5382i 0.1875 + 0.5382i −0.5488
−0.3884− 0.3079i −0.3884 + 0.3079i 0.7256


(6)

The eigenvectors corresponding to λ1, λ2, λ3 are, respectively,

~a = (0.6553, 0.6553, 0.4151)

~b = (0.1875− 0.5382i, 0.1875 + 0.5382i,−0.5488)

~c = (−0.3884− 0.3079i,−0.3884 + 0.3079i, 0.7256)

(7)

Since λ1 is a real eigenvalue and less than zero, the equilibrium is
a saddle point with a 1-D stable manifold. λ1 corresponds to a stable
line governed by vector ~a. The equation of the line is

E(s) =
x

0.6553
=

ẋ

0.6553
=

ẍ

0.4151
(8)

Since λ2, λ3 are a pair of complex conjugate eigenvalues with
positive real parts, the equilibrium is a saddle point with a 2-D unsta-
ble manifold. λ2, λ3 correspond to an unstable state space plane with
a normal vector

~d = ~b× ~c = (−0.0771 + 0.5595i, 0.0771 + 0.5595i, 0.5335i)
(9)

This plane is governed by the equation

U(s) = (−0.0771 + 0.5595i)x+ (0.0771 + 0.5595i)ẋ− 0.5335iẍ
(10)

The Shilnikov condition is satisfied because the function has
one real eigenvalue and a pair of complex conjugate eigenvalues
with |1.3221| > |0.2860|. As a result, the system is chaotic by
Shilnikov’s theorem.

3.2 Lyapunov exponent, Kaplan–Yorke dimension, and
bifurcations

Lyapunov exponents characterize the average exponential rate of
separation of infinitesimally close trajectories in state space as time
tends to infinity [29, 30]. The Lyapunov exponents are calculated to
be (0.1652± 0.0001, 0,−0.9152), giving a Kaplan–Yorke dimen-
sion of 2.1805 [31], thereby confirming that the system is chaotic.
To study the dynamical behavior further, the coefficient 0.75 in
Eq. (1) is replaced by a control parameter A which is varied over
the range A ∈ [0, 2] as shown in Fig. 2. The route to chaos is by a
period-doubling cascade over a narrow range of A.

4 Symmetry and transient chaos

4.1 Symmetry of the system

Since the nonlinearity is 1.2× 10−6sinh(ẋ/0.026) which is an odd
function, the system is antisymmetric about the origin. It can exhibit
symmetry breaking and offers the possibility that attractors will split
or merge as a bifurcation parameter is changed.

Figure 3 describes this feature in detail. The attractors under dif-
ferent initial conditions are shown in Table 1. For A = 2, the system
exhibits a period-1 attractor which is antisymmetric about the origin
as shown in Fig. 3(a), and this type of attractor is called type-S . As
A is decreased, the symmetry is broken, and the attractor splits into
a pair of attractors that are antisymmetric about the origin as shown
in Fig. 3(b) and Fig. 3(c). The difference between the two attrac-
tors is in the initial conditions. The initial condition for Fig. 3(b)
is (0.1, 0.1, 0.1), and this type of attractor is called type-P+. The
antisymmetric attractor with initial conditions (−0.1,−0.1,−0.1)
as shown in 3(c) is called type-P-. After the symmetry is broken
and the attractor splits, the two attractors begin their own period-
doubling route to chaos as shown in Figs. 3(d) – 3(g). Then the
symmetry is restored, and the two attractors merge into one attractor
which is antisymmetric about the origin. The attractor for A = 0.75
is shown in Fig. 3(h). On the other hand, whenA is increased from a
small value, the system starts as two attractors of type-P+ and type-
P- as shown in Fig. 3(m) and Fig. 3(n). Then the attractors undergo
a period-doubling route to chaos as shown in Figs. 3(l) – 3(i), after
which they merge into one attractor as shown in Fig. 3(h).

Table 1 Types of attractors for different initial conditions
Figure A Initial conditions Attractor type

Fig. 3 (a) 2 (0.1, 0.1, 0.1)
(−0.1,−0.1,−0.1)

type-S

Fig. 3 (b) 1.3 (0.1, 0.1, 0.1) type-P+
Fig. 3 (c) 1.3 (−0.1,−0.1,−0.1) type-P-
Fig. 3 (d) 1.0 (0.1, 0.1, 0.1) type-P+
Fig. 3 (e) 1.0 (−0.1,−0.1,−0.1) type-P-
Fig. 3 (f) 0.95 (0.1, 0.1, 0.1) type-P+
Fig. 3 (g) 0.95 (−0.1,−0.1,−0.1) type-P-

Fig. 3 (h) 0.75 (0.1, 0.1, 0.1)
(−0.1,−0.1,−0.1)

type-S

Fig. 3 (i) 0.45 (0.1, 0.1, 0.1) type-P+
Fig. 3 (j) 0.45 (−0.1,−0.1,−0.1) type-P-
Fig. 3 (k) 0.35 (0.1, 0.1, 0.1) type-P+
Fig. 3 (l) 0.35 (−0.1,−0.1,−0.1) type-P-
Fig. 3 (m) 0.32 (0.1, 0.1, 0.1) type-P+
Fig. 3 (n) 0.32 (−0.1,−0.1,−0.1) type-P-
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ẍ

-0.2

-0.1

0

0.1

0.2

(a)
x

-0.4-0.2 0 0.2

ẍ
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ẍ

-0.4

-0.2

0

0.2

0.4

(d)
x

-0.2 0 0.2 0.4

ẍ
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Fig. 3: State space plots in the x-ẍ plane for different values of the variable A.
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Fig. 2: Lyapunov exponents, Kaplan–Yorke dimension, and local
maxima of x as a function of the control parameter A in the interval
A ∈ [0, 2]

4.2 Transient chaos

The dynamics of transient chaos differs from ordinary chaos, and
many chaos based applications would not work under those condi-
tions. Therefore, it is useful to consider the transient behavior of this
system.

For initial conditions near the basin boundary such as
(0.6, 0, 6, 0.6), the waveforms for different values of the control
parameters are as shown as Fig. 4. Figure 4(a) indicates that the sys-
tem first starts to diverge for a few periods, and then it is attracted
to the attractor, and thereafter exhibits chaos. Figure 4(b) shows that
as the control parameter decreases, the system first starts to diverge
for a few periods (normalized time 0 to 10) as shown in Fig. 4(a),
but after that it exhibits intermittent chaos. When the control param-
eter decreases as in Fig. 4(c), the system starts to diverge, but then
it exhibits chaos. After the normalized time exceeds 150, it escapes
from chaos and exhibits period-3 behavior.

When the initial condition is in the basin of the attractor such as
(0.4, 0, 4, 0.4), the waveform as shown in Fig. 5 is similar to the case
with initial conditions (0.6, 0, 6, 0.6). However, it has no divergence,
and the system rapidly attracts to the attractor and exhibits chaos.

When the initial condition is out of the basin of the attractor such
as (0.7, 0, 7, 0.7), the waveform as shown in Fig. 6 rapidly diverges.

5 Design and implementation of the simplest
chaotic circuit with a hyperbolic sine using LEDs

The schematic for the simplest chaotic circuit with a hyperbolic sine
is shown in Fig. 7, which uses light emitting diodes (LEDs) to imple-
ment the hyperbolic sine nonlinearity. In this circuit, the component
values are not critical. ExceptR1 = 13kΩ, all the resistors are taken
as 10kΩ with 10% tolerance. All the capacitors are taken as 0.01µF
monolithic ceramic capacitors with 10% tolerance. The operational
amplifiers are TL084 with a voltage supply of±15V. The diodes are
yellow LEDs which allows the chaos to be observed without benefit
of an oscilloscope. The resistorR1 serves as a bifurcation parameter
as given by A = 10kΩ

R1 .

Fig. 7: Schematic of the simplest chaotic circuit with a hyperbolic
sine.

The circuit shows good agreement with the results of numerical
calculations as shown in Fig. 1. Furthermore, the dominant fre-
quency is observed to be 1.24 kHz, in good agreement with the
earlier analysis.

6 Differential chaos shift keying

6.1 Principle of DCSK

Different chaos shift keying (DCSK) technologies employ non-
periodic and wideband chaotic signals as carriers to achieve the
effect of spectrum spreading in the process of digital modulation.
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Fig. 4: The waveform of x for different control parameters with initial conditions (0.6, 0.6, 0.6).
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Fig. 5: The waveform of x for different control parameters with initial conditions (0.4, 0.4, 0.4).
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Fig. 6: The waveform of x for different control parameters with initial conditions (0.7, 0.7, 0.7).

Fig. 8: Scheme of DCSK modulation.

Fig. 8 shows the modulation scheme for DCSK. In this scheme,
every bit has two time slots. The first time slot is used for transmis-
sion of a chaotic sequence for the reference signal. The second time
slot is used for transmission of another chaotic sequence for the ref-
erence signal which has the same length as the first time slot. If the
information bit is +1, then the information signal is the same as the
reference signal. If the information signal bit is −1, then the infor-
mation signal is the negative of the reference signal. For bits bk, the

Fig. 9: Scheme of the DCSK demodulation.

signal at time k is

si =

{
xi 2kβ < i ≤ (2k + 1)β

bkxi−β (2k + 1)β < i ≤ 2(k + 1)β

(11)

where β is the number of sampling points. The spreading factor (SF)
in the DCSK system is SF = 2β.
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For demodulation as shown in Fig. 9, the receiver calculates the
correlation between the received signal ri and the signal ri−β , which
is ri delayed by β. After a time k, the output of the correlator is

Zk =

2(k+1)β∑
i=(2k+1)β+1

riri−β (12)

Thus the information bit bk can be restored by the sign of the
decision variable,

b̂k = sgn[Zk] (13)

6.2 Security performance

To evaluate data security of the proposed scheme, we used the stan-
dard statistical test suite (SP 800-22) for random number generators
provided by National Institute of Standard Technology (NIST). The
tests were performed using information bit of +1. The sequences
obtained from the experiments passed all of the NIST tests. Typical
results of the NIST tests using variable x, y, and z as carrier signal
are shown in Table 2 ∼ Table 4, which indicate that the proposed
scheme could provide high data security.

Table 2 Results of SP 800-22 test using variable x as carrier signal
Test index P-value Results
Frequency 0.013644 SUCCESS

Block Frequency 0.054338 SUCCESS
Cumulative sums 0.341108 SUCCESS

Runs 0.506822 SUCCESS
Longest runs of ones 0.155720 SUCCESS

Rank 0.270712 SUCCESS
FFT 0.016031 SUCCESS

Non-Overlapping template matching 0.148539 SUCCESS
Overlapping template 0.034108 SUCCESS

Universal 0.791776 SUCCESS
Approximate entropy 0.205264 SUCCESS
Random excursions 0.112438 SUCCESS

Random excursions variant 0.026149 SUCCESS
Serial 0.630976 SUCCESS

Linear complexity 0.962747 SUCCESS

Table 3 Results of SP 800-22 test using variable y as carrier signal
Test index P-value Results
Frequency 0.024202 SUCCESS

Block Frequency 0.340120 SUCCESS
Cumulative sums 0.159287 SUCCESS

Runs 0.138298 SUCCESS
Longest runs of ones 0.016311 SUCCESS

Rank 0.515183 SUCCESS
FFT 0.010326 SUCCESS

Non-Overlapping template matching 0.023577 SUCCESS
Overlapping template 0.017421 SUCCESS

Universal 0.635009 SUCCESS
Approximate entropy 0.961192 SUCCESS
Random excursions 0.030366 SUCCESS

Random excursions variant 0.693147 SUCCESS
Serial 0.996960 SUCCESS

Linear complexity 0.607752 SUCCESS

6.3 Time efficiency performance

We have tested 50 groups of 106 bit data to evaluate the time
efficiency performance of the proposed scheme. Computer config-
uration used in this test is i5-2430M processor (dual-core, 2.40GHz)
with 6GB memory. The average detailed results is shown in Table. 5,

Table 4 Results of SP 800-22 test using variable z as carrier signal
Test index P-value Results
Frequency 0.273349 SUCCESS

Block Frequency 0.438436 SUCCESS
Cumulative sums 0.267472 SUCCESS

Runs 0.065698 SUCCESS
Longest runs of ones 0.226856 SUCCESS

Rank 0.707052 SUCCESS
FFT 0.186232 SUCCESS

Non-Overlapping template matching 0.678314 SUCCESS
Overlapping template 0.011782 SUCCESS

Universal 0.130535 SUCCESS
Approximate entropy 0.215923 SUCCESS
Random excursions 0.345901 SUCCESS

Random excursions variant 0.015631 SUCCESS
Serial 0.807599 SUCCESS

Linear complexity 0.334973 SUCCESS

which indicate that the proposed scheme could have some real world
applications such as transmission of audio signal.

Table 5 Results of time and speed of the scheme
Index Time Speed

Modulation 2.2055s 453.4kb/s
Add AWGN Noise 1.0561s 946.9kb/s

Demodulation 2.5374s 394.1kb/s

6.4 Compared results
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Fig. 10: Energy distribution of x, y, z and CPF map

According to reference [32], if a sequence has a more centralized
distribution of energy values, it will give better results in terms of
bit error rate (BER). The energy distribution of the variables x, y
and z of the proposed system and the Chebyshev map is shown in
Fig. 10. These histograms are obtained by examining one million
chaotic samples. From the figures, one can predict that this chaotic
system has better performance of BER than the Chebyshev sequence
in the DCSK scheme.

The obtained BER performance under additive white Gaussian
noise (AWGN) channels for spreading factor 2β = 200 is shown in
Fig. 11. From comparison of the results, DCSK can have a lower
BER when using this system as a carrier signal in the presence of
noise.

7 Conclusion

Simple chaotic systems have been widely studied for decades, but
it has been hard to find systems that simultaneously satisfy all three
kinds of simplicities. This paper proposed an example that satisfies
all three criteria. It uses the hyperbolic sine as its nonlinearity, which
leads to a circuit that is easy to construct and analyze with only
linear components and a pair of back-to-back diodes. Furthermore,
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Fig. 11: Comparison of the bit error rate for a Chebyshev sequence
and the hyperbolic sine system with DCSK.

the system exhibits symmetry breaking and produces attractors that
split or merge as a bifurcation parameter is changed. Finally, a pro-
posed practical application of the system was described, in which
the chaotic signal is used in DCSK spread spectrum communication.
Compared with the traditional DCSK scheme using a Chebyshev
sequence, the system can somewhat reduce the bit error rate in the
presence of noise.
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