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A scheme is proposed to classify the basins for attractors of dynamical systems in arbitrary

dimensions. There are four basic classes depending on their size and extent, and each class can be

further quantified to facilitate comparisons. The calculation uses a Monte Carlo method and is

applied to numerous common dissipative chaotic maps and flows in various dimensions. VC 2015

AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4927643]

In the modern chaos era, hundreds of examples of dissi-
pative dynamical systems with strange attractors have
been proposed and described. These descriptions often
include plots of the attractor, Lyapunov exponents,
attractor dimension, equilibria and their eigenvalues,
bifurcations, and routes to chaos. Less often is attention
given to the basin of attraction despite the fact that
knowledge of the basin is essential for these calculations
and for determining possible multistability and the use-
fulness of the systems in practical applications. A knowl-
edge of the basin is especially important for the growing
list of attractors that are “hidden” in the sense that the
basin does not contain the small neighborhood of any
unstable equilibrium points.1,2 Thus, it is important to
have a means of classifying and quantifying the siz e and
extent of attractor basins.

I. INTRODUCTION

All attractors, whether they be stable equilibria, limit

cycles, attracting tori, or strange attractors, are surrounded

by a basin of attraction representing the set of initial condi-

tions in the state space whose orbits approach and map out

the attractor as time approaches infinity. Basins can be small

and fit tightly around the attractor or large and include the

entire state space. More typically, the basin has some inter-

mediate size and may stretch to infinity in certain directions

but only fill a portion of the available state space. The bound-

ary of the basin can be smooth or fractal3,4 or even riddled.5

Initial conditions outside the basin may lie on unstable

periodic orbits, approach a different coexisting attractor, or

escape to infinity. In engineering applications, it is often

important that the basin be large enough that there is no

danger that some perturbation to the system will disrupt its

dynamics with possibly dire consequences. Thus, it is impor-

tant to have a means for describing the basin of attraction

and quantifying its shape and size for both theoretical and

practical reasons.

Here, we describe such a method which consists of

calculating the probability P that an initial condition at a dis-

tance r from the attractor lies within the basin of the attrac-

tor. In particular, we focus on the behavior of the function

P(r) in the limit r ! 1 and find that most attractors are well

characterized by a power law PðrÞ ¼ P0=r
c in that limit. The

parameters P0 and c serve to quantify the basin.

All the attractors examined in this way have a basin that

falls into one of four classes: (1) Class 1 has P0 ¼ 1; c ¼ 0

and attracts almost all initial conditions. (2) Class 2 has P0 <
1; c ¼ 0 and thus attracts a fixed fraction of the state space.

(3) Class 3 has 0 < c < D, where D is the dimension of the

state space and c is the codimension of the basin (the dimen-

sion of the space not in the basin), which is not necessarily

an integer. (4) Class 4 has c ¼ D and a bounded basin with a

fixed, well-defined linear size given in normalized form by

r0 ¼ P
1=D
0 . The four classes represent a hierarchy of basin

sizes from the largest to the smallest and provide a means for

comparing the size of two basins of the same class.

II. NUMERICAL METHOD

Since it is usually not possible to calculate analytically

the boundary of an attractor’ s basin, it is necessary to resort

to a numerical method. For that purpose, the Monte Carlo

method6 is well suited. In principle, one only needs to popu-

late the interior of hyperspheres of different radii centered

on the attractor with uniform random initial conditions and

test what fraction of those points converge to the attractor.

In practice, there are a number of issues that must be consid-

ered, especially since the goal is to quantify that probability

in the limit of large r, where the fraction of such randomly

chosen points that are in the basin may be vanishingly

small.

To avoid a proliferation of subscripts or vectors, con-

sider a one-dimensional example in which the attractor and

its basin occupy intervals of the X axis. A suitable example

is the logistic map7 at its accumulation point (sometimes

called the “Feigenbaum point” )

Xnþ1 ¼ A1Xnð1ÿ XnÞ; (1)

where A1 ¼ 3:5699456718… for which the attractor is a

Cantor set with a fractal dimension of about 0.538 at the

onset of chaos,8 where the Lyapunov exponent is exactly

zero, and its basin is the finite interval 0 < X < 1.

The first task is to find the “center of mass” Xm of the

attractor, which in this case is given by
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Xm ¼ lim
N!1

1

N

X

N

n¼1

Xn ¼ 0:647603… (2)

and the standard deviation S about that point is given by

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lim
N!1

1

N

X

N

n¼1

Xn ÿ Xmð Þ2
v

u

u

t ¼ 0:216354… (3)

The distance of an initial condition X0 from the attractor is

given in normalized form by r ¼ ðX0 ÿ XmÞ=S. If the attrac-

tor is a fixed point such that S would be zero, S can be set to

unity. Note that the basin class and value of c are not

affected by the choice of normalization, but the value of P0

will be.

Since the basin of Eq. (1) is known exactly, it is straight-

forward to calculate P(r)

PðrÞ ¼
1 r � 1:628798

0:5þ 0:814399=r 1:628798 < r < 2:993256

2:3110275=r r � 2:993256:

8

>

<

>

:

(4)

Since c¼ 1 at large r, this is an example of a D¼ 1 Class 4

basin with a finite linear size (r0 ¼ 2:3110275) about twice
the size of the attractor. Equation (4) provides a useful check

of the numerical method.

To use the method where no analytic calculation of the

basin boundary is possible, one begins by choosing random

initial conditions uniformly distributed in a D-dimensional

hypersphere of radius r¼ 1 and calculating what fraction of

them lies within the basin to obtain a value for P(1). Then,

one considers a hypersphere of radius r¼ 2 with random ini-

tial conditions uniformly distributed in the shell between

r¼ 1 and r¼ 2 and calculates what fraction of those lies

within the basin to get a value of DPð1Þ from which one cal-

culates Pð2Þ ¼ Pð1Þð1ÿ 1=2DÞ þ DPð1Þ=2D. The procedure

is repeated to get ever larger values of P(r) for r increasing

in powers of 2. This slightly involved method is required to

distinguish P(r) from zero at large values of r and D with a

reasonable number of initial conditions, because it ensures

that there are sufficiently many initial conditions within the

basin.

To determine whether an initial condition is in the basin,

it is necessary to calculate a running average of the

Euclidean distance qðtÞ of the orbit from the center of mass

of the attractor. For an initial condition in the basin, qðtÞ will
converge to zero, and one can safely assume it is in the basin

when qðtÞ becomes less than say S=10. For many systems,

there is a single attractor, and points outside the basin

diverge to infinity, which is easy to detect if qðtÞ exceeds

some large value such as 1000r, which it will usually do

promptly. The case in which there is a coexisting attractor is

more difficult requires adding a bailout condition if qðtÞ is

neither converging to zero nor diverging to infinity. In fact, a

byproduct of the calculation is to identify instances of multi-

stability, which are often overlooked.

Note that the center of mass of the attractor does not, in

general, lie on the attractor and may not even be within its

basin, in which case P(0) would be zero, and P(r) would not

be a monotonically decreasing function of r except at suffi-

ciently large values of r. There are examples of strange

attractors that surround stable fixed points9 and ones that

surround conservative tori.10 In such unusual cases, it may

be necessary to consider higher moments of qðrÞ since two

attractors can have similar values for their centers of mass.

Having obtained P(r) for values of r at integer powers

of 2, all that remains is to plot log2ðPÞ versus log2ðrÞ and

fit a straight line to the points at large r, which can be

automated using linear regression. The intercept of that line

with log2ðrÞ ¼ 0 then gives P0, and the negative of its slope

gives c. Using this procedure for the logistic map in Eq. (1)

gives values that agree with Eq. (4) to within a small fraction

of a percent.

III. 2-D MAP EXAMPLES

For ease of visualization and speed of computation

while avoiding trivial examples, we illustrate the numerical

method using two-dimensional dissipative maps whose

solutions are chaotic and thus whose attractors are strange

(fractal). The cases are chosen to include an example of each

class of basin. The extension to higher dimensions and to

chaotic flows is straightforward.

A. Class 1 basin

A Class 1 basin is one in which the basin includes all of

the state space except perhaps a set of finite measure. W e

can further subdivide these cases into ones where the

excluded set has measure zero (Class 1a) and those in which

it has nonzero measure (Class 1b). A chaotic system con-

structed to have the former property, also called “globally

attracting,” is the “sine-sine” map

Xnþ1 ¼ sinXn ÿ sin 2Yn

Ynþ1 ¼ Xn

(5)

shown in Fig. 1 with Lyapunov exponents of ð0:0465;
ÿ0:0669Þ and a Kaplan–Yorke dimension of 1.6945. This

and the following figures show lgðPÞ versus lgðrÞ, where
lg ¼ log2 is the base-2 logarithm so that the slope of the

curve is ÿc.

For all the examples here, the Lyapunov exponents are

calculated from the Jacobian matrix using the method

described by W olf et al. 11 except that the matrix elements

are determined numerically, and the calculation is run until

convergence is achieved to at least four significant digits.

However, the exponents and corresponding Kaplan–Yorke

dimensions are included only for completeness, and the

method does not depend on their values or even that the

system is chaotic but only assumes that it has an attractor of

some kind.

Note that Classes 1a and 1b have the same P(r)¼ 1 in

the limit r ! 1, but 1ÿ PðrÞ is identically zero for a

Class 1a basin, while it typically obeys a power law 1ÿ PðrÞ
¼ P0=r

c for a Class 1b basin with r0 ¼ P
1=c
0 a measure of the

linear size of the finite region not in the basin. This excluded

region may be Class 2, 3, or 4, but its (hyper)volume
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eventually becomes negligible compared to the (hyper)vo-

lume of the attractor basin as r increases.

For Eq. (5), almost every point in state space is on an

orbit that converges to the attractor. However, there is an

infinite set of points, the most obvious of which are the even-

tually fixed points given by ðX; YÞ ¼ ðpp=2; qp=4Þ, where
p and q are integers, which do not approach the attractor.

Furthermore, the attractor is dense in periodic points (every

point on the attractor is arbitrarily close to one), all unstable.

Nevertheless, the infinitely many eventually fixed and unsta-

ble periodic points are a set of measure zero in the state

space, and so the basin is considered to be Class 1a. This is

illustrated in Fig. 1, which shows that a point a distance r

from the attractor is in the basin with probability 1.0 out to a

distance of at least r ¼ 260. Said differently, out of a billion

randomly chosen initial conditions, not a single one failed to

converge onto the attractor.

B . Class 2 basin

A Class 2 basin occupies a fixed fraction of its state

space, a nontrivial example of which is the Ikeda map12

Xnþ1 ¼ cþ lðXn cos/ÿ Yn sin/Þ
Ynþ1 ¼ lðXn sin/þ Yn cos/Þ

/ ¼ bÿ a=ð1þ Xn
2 þ Yn

2Þ
(6)

with a¼ 6, b ¼ 0:4, c¼ 1, and l ¼ 0:9, as shown in Fig. 2

with Lyapunov exponents ð0:5076;ÿ0:7183Þ and a

Kaplan–Yorke dimension of 1.7066. The outer edge of the

basin of attraction is a logarithmic spiral.

This is an example of a system in which P(r) is not a

monotonically decreasing function of r but rather has a small

oscillation in the vicinity of r¼ 8.

C. Class 3 basin

A Class 3 basin extends to infinity in some directions

but occupies an ever decreasing fraction of the state space,

an example of which is the H�enon map13

Xnþ1 ¼ 1ÿ aXn
2 þ bYn

Ynþ1 ¼ Xn

(7)

with parameters a ¼ 1:4 and b ¼ 0:3, as shown in Fig. 3 with

Lyapunov exponents ð0:4192;ÿ1:6232Þ and a Kaplan–Yorke

dimension of 1.2583.

Since P(r) accurately follows a power law with a slope

of ÿ1.855 at large r, the basin has a fractional dimension of

Dÿ c ¼ 2ÿ 1:855 ¼ 0:145 at the largest scale even though

the basin boundary appears quite smooth.

Note that Eq. (7) has Y linearly rescaled by a factor of b

from the form proposed by H�enon in order for X and Y to

have the same magnitude. This transformation does not alter

the dynamics or the topology of the attractor, and it preserves

the value of c, although it does give a somewhat different

value of P0 since it alters the aspect ratio of the attractor.

D. Class 4 basin

A Class 4 basin is finite in extent and thus has a well

defined size in comparison with the attractor, an example of

which is the Tinkerbell map14

FIG. 1. The sine-sine map is globally attracting with a Class 1 basin having

PðrÞ ¼ 1:0 for all r.

FIG. 2. The Ikeda map has a Class 2 fractal basin and attracts a constant

fraction of about 8% of its state space.

083101-3 J. C. Sprott and A. Xiong Chaos 25 , 083101 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.104.165.254 On: Mon, 03 Aug 2015 17:42:17



Xnþ1 ¼ Xn
2 ÿ Yn

2 þ aXn þ bYn

Ynþ1 ¼ 2XnYn þ cXn þ dYn
(8)

with parameters a ¼ 0:9; b ¼ ÿ0:6; c ¼ 2; and d ¼ 0:5, as

shown in Fig. 4 with Lyapunov exponents ð0:1900;ÿ0:5209Þ
and a Kaplan–Yorke dimension of 1.3647. The basin is evi-

dently finite and appears to have a fractal boundary.

The effective radius of the basin is the value of r for

which P(r)¼ 1 or r0 ¼
ffiffiffiffiffi

P0

p ’ 1:55, which is consistent with

the fact that the basin is only slightly larger than the attractor

in Fig. 4. Such tight fitting basins are common in chaotic

systems with Class 4 basins and thus require a careful choice

of initial conditions.

Another family of two-dimensional maps with Class 4

fractal basins (but without a strange attractor) are the quad-

ratic Julia sets of the mapping Znþ1 ¼ Zn
2 þ C, where Z and

C are complex numbers.15 Much effort has been devoted to

their study as well as to the related Mandelbrot set.16

IV. 3 -D ORDINARY DIF F ERENTIAL EQ UATION
EXAMPLES

To show that the method is not limited to two-

dimensional maps, we show here examples of each of the

four classes in chaotic flows governed by autonomous sys-

tems of ordinary differential equations (ODEs). Because the

basins reside in a three-dimensional state space, we will not

attempt to show the shape of the basins, which are normally

viewed only in various cross sections.

A. Class 1 basin

Probably, the most familiar example of a three-

dimensional chaotic flow is the Lorenz system19

FIG. 3. The H�enon map has a Class 3 fractal basin that extends to infinity

but with a noninteger power law scaling.
FIG. 4. The Tinkerbell map has a Class 4 finite basin with a fractal boundary

and a size comparable to the size of the attractor.
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_x ¼ 10ðyÿ xÞ
_y ¼ ÿxzþ 28xÿ y

_z ¼ xyÿ 8z=3

(9)

with Lyapunov exponents ð0:9056; 0;ÿ14:5723Þ and a

Kaplan–Yorke dimension of 2.0621, which is well known to

have a global attractor with a Class 1a basin. Its basin of

attraction is the whole of the 3-D state space except for the

unstable equilibrium points at (0, 0, 0) and ð6
ffiffiffiffiffi

72
p

;
6

ffiffiffiffiffi

72
p

; 27Þ and the infinitely many unstable periodic orbits

embedded in the attractor, which are a set of measure zero.

Another system with a Class 1a basin is the Chen system.20

As an example of a Class 1b system, we only need to

change the 28 to 24 in Eq. (9)

_x ¼ 10ðyÿ xÞ
_y ¼ ÿxzþ 24xÿ y

_z ¼ xyÿ 8z=3;

(10)

which causes the equilibrium points at ð6
ffiffiffiffiffiffiffiffiffiffiffiffiffi

184=3
p

;
6

ffiffiffiffiffiffiffiffiffiffiffiffiffi

184=3
p

; 23Þ to become stable,21 and their basins carve

out holes in the otherwise global basin of the strange attrac-

tor with Lyapunov exponents ð0:7991; 0;ÿ14:4658Þ and a

Kaplan–Yorke dimension of 2.0552. The equilibrium points

have Class 3 basins of attraction that stretch to infinity but

with a probability that decreases approximately as 1=r1:8 so

as to become negligible compared with the basin of the

strange attractor at large r. The basin of the strange attractor

has a nonmonotonic P(r) with a minimum of about 0.9 at

r � 4, but it is asymptotic to P(r)¼ 1 for large r as required

for a Class 1 basin.

B . Class 2 basin

Almost as familiar is the R€ossler system22

_x ¼ ÿyÿ z

_y ¼ xþ 0:2y

_z ¼ 0:2þ zðxÿ 5:7Þ
(11)

with Lyapunov exponents ð0:0714; 0;ÿ5:3943Þ and a

Kaplan–Yorke dimension of 2.0621, which has a Class 2

basin that fills about 23% of the 3-D state space.

C. Class 3 basin

The simplest autonomous system of ODEs with a quad-

ratic nonlinearity and a chaotic solution is given by23

_x ¼ y

_y ¼ z

_z ¼ ÿ2:017zþ y2 ÿ x

(12)

with Lyapunov exponents ð0:0551; 0;ÿ2:0721Þ and a

Kaplan–Yorke dimension of 2.0266, and its attractor has a

relatively small Class 3 basin.

D. Class 4 basin

Class 4 basins appear to be relatively uncommon in sim-

ple three-dimensional autonomous chaotic flows. However,

it is possible to convert most chaotic flows into ones with a

Class 4 basin by multiplying their right-hand sides by a func-

tion f ðx; y; zÞ ¼ 1ÿ ðx2 þ y2 þ z2Þ=R2, which is zero on a

sphere of radius R and approaches unity toward the center of

the sphere. Since the flow is zero on that sphere, traj ectories

cannot cross it, and hence, the basin must be completely con-

fined within it. If R is sufficiently large, the chaos is pre-

served by this modification, although the strange attractor

may move and change size slightly.

As an example, the method can be applied to the Lorenz

system in Eq. (9) with R¼ 64

_x ¼ 10ðyÿ xÞf ðx; y; xÞ
_y ¼ ðÿxzþ 28xÿ yÞf ðx; y; zÞ
_z ¼ ðxyÿ 8z=3Þf ðx; y; zÞ

f ðx; y; zÞ ¼ 1ÿ ðx2 þ y2 þ z2Þ=4096;

(13)

which remains chaotic. The modified system has a basin

whose volume is no larger than (4pR3=3), and thus, it pro-

vides a useful check on the accuracy of the Monte Carlo cal-

culation of the basin size.

The Lyapunov exponents change from ð0:9056; 0;
ÿ14:5723Þ for R ¼ 1 to ð0:7145; 0;ÿ11:4953Þ for R¼ 64.

The ordinary Lorenz system of Eq. (9) is centered on

ð0; 0; 23:5495Þ and has a standard deviation of 14.7770, but

when the spherical boundary at R¼ 64 is added, the center

shifts to ð0; 0; 24:9570Þ, and the standard deviation increases

to 15.54861. Thus, the attractor appears to expand and move

toward the boundary slightly, although it is comfortably

inside the boundary. If the basin boundary lies on the sphere,

we expect P0 to have a value of P0 ¼ ð64=15:54861Þ3
¼ 69:737, which is in reasonable agreement with the calcu-

lated value of 70.098.

V. OTHER EXAMPLES

W e conclude with a few other examples of chaotic

systems with various basin classes.

A. Loz i map

The Lozi map17

Xnþ1 ¼ 1ÿ 1:7jXnj þ 0:5Yn

Ynþ1 ¼ Xn

(14)

shown in Fig. 5 with Lyapunov exponents ð0:4702;
ÿ1:1634Þ and a Kaplan–Yorke dimension of 1.4042 resem-

bles the H�enon map with a Class 3 basin with c ¼ 1:476,
which implies that the dimension of the basin is Dÿ c

¼ 2ÿ 1:497 ¼ 0:503.

B . Dual H�enon map

An example of a system that has a symmetric pair of

strange attractors is the cubic map

Xnþ1 ¼ 2Xn þ 0:3Yn ÿ 0:1X3
n

Ynþ1 ¼ Xn

(15)
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shown in Fig. 6 with Lyapunov exponents ð0:3524;
ÿ1:5563Þ and a Kaplan–Yorke dimension of 1.2264. Each

attractor resembles the H�enon map, and each has a Class 3

basin with c ¼ 1:896, which implies that the dimension of

the basin is Dÿ c ¼ 2ÿ 1:896 ¼ 0:104.

C. Sprott 3 -D map

A simple example of a three-dimensional chaotic map

from the preface of Ref. 18 is

Xnþ1 ¼ X2
n ÿ 0:2Xn ÿ 0:9Yn þ 0:6Zn

Ynþ1 ¼ Xn

Znþ1 ¼ Yn

(16)

with Lyapunov exponents of ð0:1275;ÿ0:1504;ÿ0:4879Þ
and a Kaplan–Yorke dimension of 1.8476. This is a kind of

three-dimensional generalization of the H�enon map and also

has a Class 3 basin with c ¼ 2:796, which implies that the

dimension of the basin is Dÿ c ¼ 3ÿ 2:796 ¼ 0:204.

D. R€ossler h yperch aos

Probably, the best known four-dimensional flow is the

one proposed by R€ossler24 to illustrate hyperchaos

_x ¼ ÿyÿ z

_y ¼ xþ 0:25yþ w

_z ¼ 3þ xz

_w ¼ 0:05wÿ 0:5z

(17)

with Lyapunov exponents ð0:1120; 0:0211; 0;ÿ24:9312Þ and
a Kaplan–Yorke dimension of 3.0053, which has a Class 3

basin in the four-dimensional state space.

FIG. 5. The Lozi map resembles the H�enon map but with angular corners

and a Class 3 fractal basin that extends to infinity but with a noninteger

power law scaling.

FIG. 6. The dual H�enon map has two symmetric H�enon-like attractors, each

with a Class 3 fractal basin that extends to infinity but with a noninteger

power law scaling.
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The extension of the method to even higher dimensions

is straightforward, although computationally intensive.

VI. CONCLUSION

W e have presented here a simple method for classifying

basins of attraction and quantifying their size. Table I sum-

marizes the cases previously described, showing the proper-

ties of their basins. W e recommend that such a calculation

be included as part of the routine description of the attractor

for any dissipative dynamical system.
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TABLE I. Selected chaotic systems with their basins of attraction.

System Reference Equation Type Class P0 c

Logistic 7 1 1-D map 4 2.3110 1

Sine-sine This study 5 2-D map 1a 1 0

Ikeda 12 6 2-D map 2 0.0799 0

H�enon 13 7 2-D map 3 10.843 1.855

Lozi 17 14 2-D map 3 3.7969 1.497

Dual H�enon This study 15 2-D map 3 28.540 1.896

Tinkerbell 14 8 2-D map 4 2.4029 2

Sprott preface 18 16 3-D map 3 10.670 2.796

Lorenz 28 19 9 3-D flow 1a 1 0

Lorenz 24 This study 10 3-D flow 1b 1 0

R€ossler 22 11 3-D flow 2 0.2286 0

Simplest quadratic 23 12 3-D flow 3 19.744 2.782

Bounded Lorenz This study 13 3-D flow 4 70.098 3

R€ossler hyperchaos 24 17 4-D flow 3 0.4060 0.408
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