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Nosé’s pioneering 1984 work inspired a variety of time-reversible deterministic thermostats. Though 
several groups have developed successful doubly-thermostated models, single-thermostat models have 
failed to generate Gibbs’ canonical distribution for the one-dimensional harmonic oscillator. A 2001 
doubly-thermostated model, claimed to be ergodic, has a singly-thermostated version. Though neither of 
these models is ergodic this work has suggested a successful route toward singly-thermostated ergodicity. 
We illustrate both ergodicity and its lack for these models using phase-space cross sections and Lyapunov 
instability as diagnostic tools.

© 2015 Elsevier B.V. All rights reserved.
1. Single-variable thermostats and Gaussian ergodicity

In 1984 Hoover explored the application of the Nosé–Hoover 
version [1] of Nosé’s canonical motion equations [2,3] to a har-
monic oscillator at thermal equilibrium with coordinate q, momen-
tum p, temperature T , and thermostat variable ζ :

{ q̇ = p ; ṗ = −q − ζ p ; ζ̇ = [ p2 − T ]/τ 2 } [ NH ] .

Posch, Hoover, and Vesely found that this model partitions the 
(q, p, ζ ) phase space into many separate toroidal regions embed-
ded in a chaotic sea [4]. The complexity and the stiffness of the 
solutions increase rapidly as the thermostat response time τ is re-
duced. In addition to equilibrium applications analogous motion 
equations can be used to thermostat irreversible nonequilibrium 
simulations such as steady shear and heat flows. The harmonic 
oscillator can generate steady-state heat flow problems if the tem-
perature varies in space [5,6]:

1 − ε < T = T (q) = 1 + ε tanh(q) < 1 + ε .

Here ε is the maximum value of the temperature gradient, 
(dT /dq), to which the oscillator is exposed. It can be viewed as 
the strength of nonlinearity, and depending on its value, one can 
move from the equilibrium regime (where ε = 0) to the nonequi-
librium regime (where ε > 0).
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Somewhat paradoxically, the Nosé–Hoover motion equations as 
well as all the others we consider here are time-reversible, even 
away from equilibrium. That is, any time-ordered sequence of 
(q, p, ζ ) points can be reversed either [1] by changing the sign of 
dt in the integrator, or [2] by changing the signs of the (p, ζ ) vari-
ables. The harmonic oscillator equations also have mirror symme-
try. Changing the signs (+q, +p) ←→ (−q, −p) gives an additional 
pairing of solutions.

Apart from being time-reversible, a good thermostat must re-
sult in ergodic dynamics. Ergodicity of the dynamics connects dy-
namical averages with corresponding Boltzmann–Gibbs phase av-
erages. In describing the results of the present work, we have used 
Ehrenfests’ idea of “quasiergodicity”, where the dynamics eventu-
ally comes arbitrarily close to each feasible point, interchangeably 
with “ergodicity”.

For the equilibrium Nosé–Hoover harmonic oscillator, the Gaus-
sian distribution is the stationary solution of the Liouville’s phase-
space continuity equation:

v = ṙ = (q̇, ṗ, ζ̇ ) −→ (∂ f /∂t) = −∇r · ( f v) ≡ 0

−→ f (q, p, ζ ) ∝ e−q2/2T e−p2/2T e−ζ 2τ 2/2T .

On the other hand, numerical work gives two kinds of solutions, 
either quasi-periodic tori, with all Lyapunov exponents being zero 
or a single chaotic, Lyapunov-unstable sea. The global dynamics, 
therefore, either remains confined within the tori, or occupies 
the chaotic sea separated from the tori, depending upon the ini-
tial conditions, the temperature T , and the response time τ . In 
other words the presence of two sets of global maximal Lyapunov 
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exponents – one positive and another zero, indicates that a trajec-
tory starting from an arbitrary initial condition is unable to explore 
the neighborhood of the entire feasible phase-space. As a result, 
the phase-space gets partitioned into at least two noncommuni-
cating regions, violating the metric indecomposibility of the phase 
space – the necessary and sufficient condition for ergodic dynam-
ics according to Birkhoff’s theorem. Thus the singly-thermostated 
oscillator equations are not “ergodic”, so that Gibbs’ statistical me-
chanics is unable to describe the oscillator’s properties. For the 
next 15 years, which included many failed attempts, no singly-
thermostated oscillator models were found to be ergodic.

This letter announces our recent achievements toward the long-
standing goal of ergodic singly-thermostated oscillator models. We 
have carried out a comprehensive exploration of a previous model 
claimed to be ergodic, and found that it is not. As a result of 
those investigations we have found a path leading to a singly-
thermostated and physically motivated ergodic model for the har-
monic oscillator. We lay out the details of these discoveries in what 
follows and encourage the reader to help explore the new areas 
opened up by our work.

2. Ergodicity is typically absent in the SF model

In 2001 Sergi and Ferrario [SF] announced that they had found 
an ergodic thermostated oscillator model [7]. In addition to the 
oscillator coordinate, momentum, and thermostat variable (q, p, ζ )

their model includes a parameter ν which can be either positive 
or negative:

q̇ = p(1 + ζν) ; ṗ = −q − ζ p ; ζ̇ = [ p2 − T − qpν ]/τ 2 ; η̇ = ζ.

Here, and in what follows, we will ignore the fact that SF actually 
solve the above four equations, not just the three shown below:

{ q̇ = p(1 + ζν) ; ṗ = −q − ζ p ; ζ̇ = p2 − T − qpν } [ SF ].
This is because their work was based on a Hamiltonian with two 
degrees of freedom. Consider a particular initial condition (q, p, 
ζ ) that evolves in some time t to a unique (q′ , p′ , ζ ′). The lat-
ter variables do not depend on the initial value of η, which could 
be given or not, arbitrarily. The fourth equation, for the evolution 
of a variable which is the time integral of ζ , plays no role at all 
in the dynamics of (qpζ ) and can so be ignored, which we do 
throughout. This extraneous variable obscured the fact that SF im-
plicitly claimed ergodicity for a singly-thermostated oscillator. As a 
result, this desirable feature of their relatively widely-cited paper 
has been previously ignored. However, as a consequence of remov-
ing η̇, the symplecticity of the dynamics disappears.

Like the NH model the SF oscillator has mirror symmetry 
(+q, +p) ←→ (−q, −p). In addition the time reversibility of the 
Sergi–Ferrario equations requires that the functions p and ζ , as 
well as the parameter ν , all change sign in the reversed motion 
with the coordinate values unchanged. For clarity we have replaced 
Sergi and Ferrario’s parameter “τ ” by ν throughout the present 
work. This change emphasizes that an increase in |ν| reduces the 
response time of the thermostat terms.

For the remainder of this study, we choose to keep τ = 1. Usu-
ally τ , which represents the relaxation time of the dynamics, is 
chosen according to the relation [12]: τ 2 = kT /ω2, where ω is 
the angular frequency of the system. In our present case, since the 
system comprises a single harmonic oscillator with unit mass and 
spring constant, ω = 1. Additionally, most of the work ascertaining 
the ergodicity of thermostatted dynamics has taken the relaxation 
time to be unity. We wish to highlight the fact that if the relax-
ation time is chosen too large, it will have no effect on the system 
dynamics, while if τ is chosen too small, the equations become too 
stiff.
Fig. 1. The torus shown here results from the initial conditions (q, p, ζ ) = (1, 1, 1)

using Sergi and Ferrario’s original equations with ν = +1. The local values of the 
largest Lyapunov exponent on the torus are indicated by color: −1.06 (blue) <
λ1(t) < 1.89 (red). Its time-averaged mean value, λ1 = 〈λ1(t)〉 is zero. The tem-
perature is unity. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

Sergi and Ferrario claimed that their four [but actually only 
three, for the reason just cited] oscillator equations [7] were er-
godic (filling out the entire three-dimensional Gaussian distribu-
tion) for ν > 0.5. That surprising claim sparked the present work. 
To begin our exploration of their model we carried out a simula-
tion of the SF equations with the temperature T and parameter 
ν both equal to unity and with the initial conditions (q, p, ζ ) =
(1, 1, 1). Fig. 1 shows the resulting torus, colored according to the 
local flow instability. Evidently this special case of the SF model is 
definitely not ergodic.

The difficulty in isolating a small embedded torus by looking at 
the global dynamics [13] prompted us to investigate the Poincaré 
section at ζ = 0. In fact, any other typical Poincaré section would 
have served our purpose. Recall that Gibbs’ probability density is 
Gaussian in both q and p. Accordingly sections in q and p (as well 
as in ζ ) that are far from origin are atypical, and may not give any 
useful results. So long as the section chosen is a typical one, the 
dynamics within it can be studied to understand ergodicity.

Rather than abandoning the SF approach we also looked for 
modifications that might be ergodic. Changing the parameter ν
from 1 to 2 or 3 or 4 or 5 or 6 and applying due diligence led in 
each case to the discovery of nested tori. Typically the tori pen-
etrate the plane ζ = 0 in four widely-separated distinct places. 
Fig. 2 illustrates these “period-four” equilibrium points for the SF 
equations. Just as in the other figures the online version is colored 
according to the local value of the largest of the three Lyapunov 
exponents, λ1(t). We denote the long-time average value of this 
exponent by λ1 ≡ 〈λ1(t)〉.

Holes in the chaotic sea are most easily found visually. Then, 
zooming in on such a hole the central point corresponding to a 
periodic orbit can be found. By first looking at cross sections dec-
orated by a million penetration points and then zooming in on the 
holes we can obtain precise six-figure estimates for the (q, p, 0)

points that lie at the center of each hole, on the central periodic 
orbit. Viewed in the (q, p, 0) plane, diligent searches showed that 
the six choices of ν shown in Fig. 2, all include simple tori cen-
tered on a periodic orbit and embedded in a chaotic sea. Looking 
at the figure, the relatively small but clearly visible holes can be 
seen for ν = 2, 4, 5, and 6. The large irregular holes for ν = 1 form 
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Fig. 2. Cross sections at ζ = 0, for different values of ν , with the local values of the largest Lyapunov exponent λ1(t) colored from � −1.0 (blue) to � +1.0 (red). The top, 
middle and bottom figures on the left correspond to ν = 1, 3 and 5, respectively. Likewise, the figures on the right correspond to ν = 2, 4 and 6, respectively. The white curves 
correspond to intersections with the nullcline surface. There the phase-point velocity is parallel to the (q, p, 0) plane with q = (p2 − 1)/(νp). The tori for ν = 2, 4, 5 and 6
penetrate the plane within four roughly-triangular holes in those cross sections. The tori for ν = +3 are much smaller, as is detailed in Fig. 3. The four penetrations occur as 
two pairs of mirror-image points: (q, p, 0) = (±1.04031, ±0.39432, 0) and (±1.18488, ∓0.94527, 0). The temperature is unity throughout. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)
a cross section of the torus shown in Fig. 1. The four tiny holes 
corresponding to ν = 3 are too small to see without zooming in. 
Some of the details of these investigations are described in what 
follows, along with a concluding Summary, discovery, and advice
section.

3. Lyapunov instability and Gaussian moments

The largest time-averaged Lyapunov exponent λ1 measures the 
exponential tendency for two nearby chaotic trajectories to sep-
arate, δ(t) � δ(0)e+λt . The local value λ1(t) exhibits fluctuations, 
even in the regular toroidal regions where the long-time aver-
age, λ1, is zero. λ1 is positive in the chaotic sea. It is a measure 
of the chaos there. For online viewing we have included the lo-
cal values with color, ranging from blue to red as the exponent 
increases. For the model of Fig. 1 the long-time-averaged expo-
nent is equal to zero, as expected for a two-dimensional torus 
in a three-dimensional space. Simulations with ν = 2, 3, 4, 5, 6
looked much more promising, as they all generated “fuzzy balls” 
in (q, p, ζ ) space. We picture the three-dimensional Gaussian dis-
tribution, proportional to e−q2/2−p2/2−ζ 2/2, as a fuzzy ball. It is 
evident that the density falls off exponentially in all directions as 
one moves away from the “center” of the pictured ball.

We next investigated the ergodicity of these fuzzy balls by mea-
suring the time-averaged moments {〈q2, q4, q6, p2, p4, p6〉}. For 
every value of ν , using a spacing of 0.05 with 0 < ν ≤ 6, we 
found that the deviations from the even Gaussian moments are 
small and masked by fluctuations whenever the tori diameters 
are small. These deviations led us to a topological investigation of 
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Fig. 3. An enlarged version of the ν = +3 case shown in Fig. 2 shows four barely-
visible “holes” in the ζ = 0 cross section. Magnification of the lower-left hole, 
tenfold in both the q and the p directions, reveals a sharp triangular boundary be-
tween nested tori on the inside and chaos on the outside. Because the location of 
the toroidal region is a smooth function of ν successive approximations track its 
center to ν = +2.9, shown in Fig. 4, and finally to ν = +2.903521, where the side-
length of the triangle is less than 3 × 10−8. Color indicates the local value of the 
Lyapunov exponent λ1(t), with red positive and blue negative. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

the distributions f (q, p, ζ ) at different cross sections, that consti-
tutes a much more sensitive indicator of nonergodicity than either 
the moments or the one-dimensional probabilities associated with 
them. We carried out visual inspections of zero-ζ cross sections 
like those shown in Fig. 2. For values of ν both smaller and larger 
than the borderline value ν = 0.5 put forward by Sergi and Fer-
rario, the sections all revealed well-defined “holes”. The “holes” 
that can be seen in the figure correspond to toroidal solutions 
which penetrate the surrounding chaotic sea.

Figs. 3 and 4, corresponding to ν = +3 and ν = +2.9 respec-
tively, reveal triangular regions enclosing nested tori. These tori 
are a clear proof of nonergodicity. The reversibility of the mo-
tion equations suggests that changing the signs of (ν, p, ζ ) in the 
initial conditions will simply reverse the trajectories. Numerical 
work, using fourth-order, fifth-order, and adaptive Runge–Kutta in-
tegrators bears that expectation out. The rotation of the triangle 
seen in the closeups (with linear zooms of factors of ten and one 
hundred) from longest-side-“up” to longest-side-“down” suggests 
a singular region in between, which further investigation locates 
near ν = +2.903521.

It appears that the tori shrink to a single periodic orbit at this 
value of ν before enlarging again as ν increases further. The peri-
odic orbit is shown in Fig. 5. A zoom into this region by a factor 
of ten million places an upper limit of 3 × 10−8 on the size of the 
thin torus that presumably surrounds the periodic orbit. The lim-
iting torus has a winding number of (1/3), which means that the 
orbit rotates through an angle (2π/3) the short way around the 
torus for each time around the long way. Since the periodic orbit 
is a neutrally stable fixed point in the Poincaré section, it is sur-
rounded by a region that very slowly fills in by orbits approaching 
from the chaotic sea that spend a long time in its vicinity, an ex-
ample of which is evident in Fig. 4. Thus it appears that at this 
singular value of ν the system may be ergodic but only after an 
infinite time.
Fig. 4. A hundred-fold linear zoom in q and p reveals the toroidal solutions within 
a triangular region of width of order 0.001. The white lines indicate (q, p) tracks of 
points moving parallel to the plane. Red and blue represent positive and negative 
local Lyapunov exponents λ1(t). The cross section displays the mirror (or inversion) 
symmetry (+q, +p) ←→ (−q, −p). ν is +2.90 here. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version of 
this article.)

Fig. 5. The stable periodic orbit near ν = 2.903521 and its projections into the 
(q, p), (q, ζ ), and (p, ζ ) planes. This orbit has a period of 12.2945528 and crosses 
the ζ = 0 plane near (q, p) = (+1.04099057, −0.395775939).

It seems likely that the mathematical [as opposed to physical] 
form of the oscillator equations, where p differs from q̇ and where 
the friction coefficient depends on qp, was offputting for later in-
vestigators so that these 2001 contradictions with the literature of 
the 1990s passed either unnoticed or at least undeclared until now.

The systematic explorations carried out by Bauer, Bulgac, Ju, 
and Kusnezov, for simple systems including the harmonic oscilla-
tor, suggested that quartic thermostating terms like −ζ p3 or −ζ 3 p
best promote chaos [8–10]. Accordingly, we modified the Sergi and 
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Ferrario equations to include a cubic (rather than linear) depen-
dence on the friction coefficient:

{ q̇ = p(1 + ζ 3ν) ; ṗ = −q − ζ 3 p ; ζ̇ = p2 − T − qpν } [ SF′ ] .

We also followed Refs. [8–10] by considering a quadratic version 
with ζ 3 → ζ |ζ |. The reader can check to confirm that these equa-
tions for the flow velocity still satisfy the stationary phase-space 
flow equation, (∂ f /∂t) = 0 = −∇ · ( f v). Here v = (q̇, ṗ, ̇ζ ) is the 
three-dimensional flow velocity in (qpζ ) space. The probability 
densities for the quadratic and cubic generalized friction coeffi-
cients ζ vary as e−|ζ |3/3 and e−ζ 4/4.

4. Two-thermostat Harmonic oscillator models

Beginning about 1990 two-thermostat models were developed, 
mostly based on controlling pairs of moments [8–12]. Applications 
established the mathematical consistency of such models with 
Gibbs’ canonical distributions, with barrier-crossing problems, and 
with Brownian motion problems. The Ju–Bulgac, Martyna–Klein–
Tuckerman, and Hoover–Holian models all generated the canoni-
cal distribution. The controversial ergodicity of the MKT oscillator 
was investigated, and confirmed with particular care, as the 2014 
Snook Prize problem [13,14]. Rather than formulating two controls 
over the potential or kinetic energy this MKT “chain” model used a 
second thermostat variable ξ to thermalize the fluctuations of the 
first, ζ 2:

{ q̇ = p ; ṗ = −q − ζ p ; ζ̇ = p2 − T − ξζ ; ξ̇ = ζ 2 − T } [ MKT ]
In 2014 Patra and Bhattacharya discovered that the doubly-

thermostated oscillator equations,

{ q̇ = p − ξq ; ṗ = −q − ζ p ; ζ̇ = p2 − T ;
ξ̇ = q2 − T } [ PB = SE ] ,

were not ergodic [15]. By coincidence Sergi and Ezra had already 
found this same result in 2010 [16]. We discovered this by notic-
ing that their Fig. 2 looked identical to Patra and Bhattacharya’s 
Figs. 2c and 2d in Ref. [15]. The key to understanding ergodicity 
and its lack in these simple oscillator systems lies in distinguish-
ing two qualitatively different types of “holes” in the cross sections 
of the flow. We turn to that next.

5. Holes in the singly-thermostated cross sections

The holes found here in the cross sections are reminiscent of 
those found recently by Patra and Bhattacharya [13]. They in-
vestigated the two unstable fixed points generated by the four-
dimensional MKT oscillator equations. Evidently the centers of the 
largest holes found in the present work typically include fixed cy-
cles of four repeating points of the mapping from one penetration 
of the plane at ζ = 0 to the next (three intermediate penetrations 
separate pairs of point repetitions). The holes are especially clear 
for the case ν = 2 in Fig. 2.

Fig. 4 illustrates a relatively sensitive case, ν = +2.90, using the 
original Sergi–Ferrario equations with linear friction. Apart from 
four tiny similar holes in the section, the chaotic sea outside them 
has a Gaussian distribution. This is consistent with the largest of 
the long-time-averaged Lyapunov exponents (as well as with the 
complete spectrum of four exponents) vanishing for all those tra-
jectories which pass through the holes.

We took the precaution of solving this problem with three dif-
ferent integrators (fourth-order, fifth-order, and adaptive Runge–
Kutta) and a variety of fixed and variable timesteps, all in a diligent 
effort to avoid numerical errors. For a purely-Hamiltonian har-
monic oscillator it is well-known that the fourth-order method 
gradually loses energy while the fifth-order method gains. The 
good agreement of all three integrators with one another shows 
that the nonlinearities of the differential equations dominate the 
errors (on the order of 10−17 or less at each timestep) from the fi-
nite precision of the simulations. By simply searching for holes and 
evaluating the largest Lyapunov exponents within them, or by eval-
uating the largest Lyapunov exponents for millions of randomly-
chosen initial conditions it is relatively easy to separate the chaotic 
and quasiperiodic regions.

6. Summary, discovery, and advice

Three families of singly-thermostated oscillators, with linear, 
quadratic, and cubic friction, were formulated to obey Gibbs’ 
canonical distribution for an oscillator. All provided chaos but none 
was ergodic. In the linear case it is possible that there is an er-
godic solution in the vicinity of ν = 2.903521. We can place an 
upper limit, � 10−16, on the nonergodic measure there. In every 
case we examined (with independent calculations in India, Nevada, 
and Wisconsin) the cross sections revealed mixed solutions, holes 
containing nested tori embedded in a chaotic Gaussian sea. Fig. 5
shows such a stable torus.

This situation bears a qualitative resemblance to solutions of 
the original Nosé–Hoover oscillator. Visualization and the local val-
ues of the largest Lyapunov exponent are the two most valuable 
tools for distinguishing the two solution types. To evaluate the 
local exponent λ1(t) requires both a “reference” trajectory and a 
nearby “satellite”. This increases the computer time required by 
only a factor of two. It is convenient to rescale the separation 
between the two similar trajectories (by displacing the satellite 
toward the reference) [17,18] at every timestep so as to deter-
mine λ1(t).

These three-dimensional oscillator problems help illuminate 
features of ergodicity searches for the four-dimensional flows ob-
tained with two thermostat variables. Our work here has shown 
that the Sergi–Ferrario oscillators are at best seldom ergodic (as-
suming only that the hundreds of cases we examined are typical).

A particularly fascinating aspect of the fully time-reversible 
Sergi–Ferrario model is the symmetry breaking illustrated in Fig. 6. 
The forward structure of the flow’s Lyapunov instability is much 
more complex than the totally different backward structure despite 
the fact that any trajectory obeying the SF motion equations can be 
followed just as well backward as forward. This “Arrow of Time” 
asymmetry of the largest Lyapunov exponent λ1(t) for a simple 
fully time-reversible flow deserves further study.

We recommend the challenge of taking up the search for er-
godic three-dimensional oscillator models. In pursuing this elu-
sive goal it seems to us highly desirable to maintain the conven-
tional relation between the coordinate and the velocity, q̇ = p. It 
is also desirable to resist such physically-artificial accelerations as 
the qp contribution to the thermostat variable ζ . At their best 
control variables should utilize transparent and meaningful ori-
gins. It is certainly possible that with increasing computer power 
searches such as those carried out by Sprott [19] could uncover a 
host of new variations of the Sergi–Ferrario or Sergi–Ezra–Patra–
Bhattacharya equations which are simultaneously robust, useful, 
physically meaningful, and, above all, ergodic.

In closing, we have recently discovered a particularly promising 
direction embodying “weak control” of the momentum through a 
choice of the parameters (α, β, γ ) in the set of three moment-
based equations of motion:

{ q̇ = +p ; ṗ = −q − ζ [ αp + β(p3/T ) + γ (p5/T 2) ] ;
ζ̇ = α[ (p2/T ) − 1 ] + β[ (p4/T 2) − 3(p2/T ) ]

+ γ [ (p6/T 3) − 5(p4/T 2) ] } .
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Fig. 6. Symmetry breaking at ν = ±2.9. The time-reversible (q, ±p, ±ζ, ±ν) trajectories trace out identical coordinate sequences, but in the opposite time direction. Even so, 
differences in the recent past histories of the forward and reversed trajectories lead to the totally different local values of the largest Lyapunov exponent λ1(t) shown here. 
The global forward and backward time averages of the local exponents λ1 match. The section for ν = −2.9 has been reflected about the coordinate axis (p = 0) to show that 
the trajectory penetrations as well as the white nullcline intersections parallel to the (q, p, 0) plane are identical in the forward and reversed trajectories.
Computational searches in (α, β, γ ) space suggest that there 
are regions where the singly-thermostated oscillator samples the 
entire Gibbs’ distribution. One such combination which appears to 
be ergodic is (α, β, γ ) = (1.50, 0.00, −0.50). We suspect there are 
many more. Finding them will conclude a search set in motion by 
Shuichi Nosé some thirty years ago.
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