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Abstract 

Categorizing dynamical systems into systems with hidden attractors and systems with self-
excited attractors is new topic in dynamical systems. In this chapter we describe three newly 
introduced families of chaotic systems with hidden attractors. We design a circuit for one 
example of each family and discuss some important properties of these kinds of circuits. 

1. Introduction 

Recent research has involved categorizing periodic and chaotic attractors as either self-excited or 
hidden [1-10]. A self-excited attractor has a basin of attraction that is associated with an unstable 
equilibrium, whereas a hidden attractor has a basin of attraction that does not intersect with small 
neighborhoods of any equilibrium points. The classic attractors of Lorenz, Rössler, Chua, Chen, 
Sprott (cases B to S), and other widely-known attractors are self-excited with one or more 
unstable equilibrium points. From a computational standpoint, this allows one to use a numerical 
method in which a trajectory started from a point on the unstable manifold in the neighborhood 
of the unstable equilibrium, reaches an attractor and identifies it [7]. Hidden attractors cannot be 
found by this method and are important in engineering applications because they allow 
unexpected and potentially disastrous responses to perturbations in a structure like a bridge or an 
airplane wing. 

It has been shown in [11-13] that the chaotic attractors in dynamical systems without any 
equilibrium points, with only stable equilibria, or with a line of equilibria are examples of hidden 
attractors. That may be the reason why such systems are rarely found, and only a few such 
examples have been reported in the literature [11-23]. These systems are challenging, and 
studying them may reveal new phenomena in dynamical systems. 

On the other hand, the circuit implementation of chaotic systems has attracted much interest in 
the past decades [24-30]. It has bolstered the confidence that chaos is a real phenomenon and has 
provided experimental data for many applications in the study of chaos.  

In the next section, we briefly introduce the above mentioned three families of hidden attractors. 
In the third section we show a designed circuit for one example of each family. We conclude 
with some discussion in the last section where we mention some important properties of chaotic 
circuits with hidden attractors. 

2. Three new families of hidden chaotic attractors 



2.1. Chaotic flows with no equilibria 

In this section we consider chaotic flows with no equilibria. Such systems have neither 
homoclinic nor heteroclinic orbits [31], and thus the Shilnikov method [32, 33] cannot be used to 
verify the chaos. The oldest and best-known example is the conservative Sprott A system [34] 
listed as NE1 in Table 1. This is an important system since it is a special case of the Nose-Hoover 
oscillator [35] which describes many natural phenomena [36], and thus it suggests that such 
systems may have practical as well as theoretical importance. In [11] we performed a systematic 
search to find three-dimensional chaotic systems with quadratic nonlinearities and no equilibria. 
Our search was based on the methods proposed in [37] and used our own custom software. The 
objective was to find the algebraically simplest cases which cannot be further reduced by the 
removal of terms without destroying the chaos. The main method for finding these systems was 
to constrain the search space to cases where we could show algebraically that the equilibrium 
points are imaginary. For example, any chaotic solution of a parametric system such  
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is a candidate. An exhaustive computer search was done considering many thousands of 
combinations of the coefficients and initial conditions, seeking cases for which the largest 
Lyapunov exponent is greater than 0.001. 

In addition to the seventeen cases listed in the Table 1, dozens of additional cases were found 
that are extensions of these cases with additional terms. For each case that was found, the space 
of coefficients was searched for values that are deemed “elegant” [37], by which we mean that as 
many coefficients as possible are set to zero with the others set to ±1 if possible or otherwise to a 
small integer or decimal fraction with the fewest possible digits. Except for NE1, all these cases 
are dissipative. The Lyapunov spectra and Kaplan-Yorke dimension are shown in Table 1 along 
with initial conditions that are close to the attractor.  

 

Table 1 
Seventeen simple chaotic systems with no equilibria. 

Model Equations a LEs DKY (x0, y0, z0) 

NE1 x y=�
� 1.0 0.0138, 0, -0.0138 3.0000 (0, 5, 0)  



  y x zy= − −�
�

2z y a= −�  

NE2 

x y= −�
�

y x z= +�
�

22z y xz a= + −�  

0.35 0.0776, 0, -1.5008 2.0517 (0, 0.4, 1)  

NE3 

x y=�
�

y z=�
�

20.1 1.1z y x xz a= − + + +�  

1.0 0.0522, 0, -2.6585 2.0196  (1, 1, -1) 

NE4 

0.1x y a= − +�
�

y x z= +�
�

3z xz y= −�  

1.0 0.0235, 0, -8.480 2.0028 (-8.2, 0, -5)  

NE5 

2x y=�
�

2y x z= − −�
�

2 2z y z a= − + +�
�

2.0 0.0168, 0, -0.3622 2.0465 (0.98, 1.8, -0.7)  

NE6 

x y=�
�

y z=�
�

z y xz yz a= − − − −�
�

0.75 0.0280, 0, -3.4341 2.0082 (0, 3, -0.1)  

NE7 

x y=�
�

y x z= − +�
�

2 20.8z x z a= − + +�
�

2.0 0.0252, 0, -6.8524 2.0037 (0, 2.3, 0)  

NE8 

x y=�
�

y x yz= − −�
�

1.3 0.0314, 0, -10.2108 2.0031 (0, 0.1, 0) 
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�
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�

27z xz x a= − + −�
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0.55 0.0504, 0, -0.3264 2.1544 (0.5, 0, 0)  

NE10 

x z=�
�

y z y= −�
�

0.9z y xy xz a= − − + +�
�

0.6 0.0061, 0, -1.3002 2.0047 (1, 0.7, 0.8)  
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x y=�
�

y x z= − +�
�

2 1.8z z xy xz a= − − −�
�

1.0 0.0706, 0, -0.6456 2.1094 (0, 1.6, 3)  

NE12 

x z=�
�

y x y= −�
�

24 8z x xy yz a= − + + +�
�

0.1 0.0654, 0, -2.0398 2.0321 (0.5, 0, -1)  

NE13 

x y= −�
�

y x z= +�
�

0.2z xy xz yz a= + + −�
�

0.4 0.1028, 0, -2.1282 2.0483 (2.5, 0, 0)  
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1.0 0.0532, 0, -11.8580 2.0045 (1, 0, -4)  
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1.0 0.0607, 0, -0.1883 2.3224  (0, 1, -1)  
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2 2.3z x y zx a= − − + +�
�

2.0 0.2257, 0, -1.7477 2.1292 (1, -1, 0) 

 

 

2.2. Chaotic flows with stable equilibria 

In [12], the search for chaotic flows with a stable equilibrium first focused on jerk systems. 
Consider a general equation with quadratic nonlinearities of the form 
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Any equilibrium point of (x*, y*, z*) of system (2) must have y*= z*= 0 and eigenvalues � that 
satisfy 

3 2
z y xf f fλ λ λ− − −  (3) 

in which fx = a1 + 2a4x*, fy = a2 + a7x*, and fz = a3 + a8x*. Using the Routh-Hurwitz stability 
criterion, we require fz < 0, fy fz + fx > 0, and fx < 0 for that equilibrium to be stable. 

We can find x* from a1x + a4x2 + a10 = 0. For a4 � 0, we have ( )*
1,2 1 4/ 2x a a= − ± ∆  

where 2
1 4 104a a a∆ = − . To have an equilibrium, � should be greater than or equal to zero, in which 

case, ( )*
1 1 4/ 2x a a= − + ∆

 
and ( )*

2 1 4/ 2x a a= − − ∆ . From the stability condition fx < 0 for x1
*, we 

have 0∆ < , which is impossible. Thus a quadratic jerk system cannot have two stable equilibria, 
and we therefore modify the general case in Eq. (3) to 
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in which there is no x2 term in the z� equation to ensure that one and only one equilibrium exists. 
This system has a single equilibrium at ( )9 1/ ,0,0a a−  whose stability requires 
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Again, an exhaustive computer search was done considering many thousands of combinations of 
the coefficients a1 through a9 and initial conditions subject to the constraints in Eq. (5), seeking 
cases for which the largest Lyapunov exponent is greater than 0.001. Cases SE1-SE6 in Table 2 
are six simple cases found in this way. As can be seen, the eigenvalues for the equilibria at the 
origin have all negative real parts, which means that each equilibrium is stable. 

By similar calculations, many other simple structures for chaotic flows were investigated, and 17 
additional cases (SE7-SE23) were added to the previous six jerk systems in Table 2. In addition to 
the cases listed in the table, dozens of additional cases were found, but they were either 
equivalent to one of the cases listed by some linear transformation of variables, or they were 
extensions of these cases with additional terms. 

The Lyapunov spectra and Kaplan-Yorke dimensions are shown in Table 2 along with initial 
conditions that are close to the attractor. Since all the cases have a stable equilibrium, a point 
attractor coexists with a strange attractor for each case. 

Table 2. Twenty-three simple chaotic flows with one stable equilibrium. 
 
Model Equations Equilibrium Eigenvalues LEs DKY (x0, y0, z0) 

SE1 
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20.6 2 0.4z x y z z xy= − − − + −�  

 

0 

0 

−1.9548 
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±0.7149i 
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−2.0377 
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2.3. Chaotic flows with line equilibria 

In [13], the search for chaotic flows with a line equilibrium was inspired by the structure of the 
conservative Sprott case A system [34],  
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We consider a general parametric form of Eq. (6) (without the constant term in ) with quadratic 
nonlinearities of the form 
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As can be seen, this system has a line equilibrium at (0, 0, z) with no other equilibria (in other 
words the z-axis is an infinite line equilibrium of equilibrium). 

As before, an exhaustive computer search was done considering millions of combinations of the 
coefficients a1 through a9 and initial conditions, seeking dissipative cases for which the largest 
Lyapunov exponent is greater than 0.001. Cases LE1-LE6 in Table 3 are six simple cases found in 
this way with only six terms. With a similar procedure, three other similar cases LE7-LE9 were 
found and included in Table 3.  

The equilibria, eigenvalues, Lyapunov exponent spectra, and Kaplan-Yorke dimensions are 
shown in Table 3 along with initial conditions that are close to the attractor. A discussion of why 
these systems belong to the category of hidden attractors is in [13]. 

Table 3 
Six simple chaotic flows with a line equilibrium.  
Case Equations (a,b) Equilibrium Eigenvalues LEs DKY (x0, y0, z0) 

LE1 

 

 

 

a = 15 

b = 1 
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0.0717 
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0.5232 
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a = 17 

b = 1 

0 
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0 

0 

z 

 

0 

0.0539 

0 
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3. Circuit realization of three new families of hidden chaotic attractors 

3.1. Circuit realization of one chaotic flow with no equilibria 

The electronic chaos generator of the chaotic flow with no equilibrium NE6 was designed (Fig. 
1). The circuit consists of common electronic components such as resistors, operational 
amplifiers, capacitors and multipliers. The variables of the systems x, y, z correspond to the 
voltages of capacitors C1, C2, and C3, respectively. Hence the dynamics of the proposed circuit 
can be expressed as three differential equations in the corresponding voltage variables 
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The values of the components are chosen as follows: 1 2 3 6 7 8 9 10 10 ,R R R R R R R R k= = = = = = = = Ω  

4 5 1 ,R R k= = Ω  1 2 3 20 ,C C C nF= = =  and 0.75a DCV V= .The designed circuit was simulated using the 

electronic simulation package Multisim for the initial 
conditions ( ) ( ) ( )( ) ( )

1 2 2
0 , 0 , 0 0 ,3 , 0.1C C Cv v v V V V= − . The resulting phase portraits shown in Fig. 2 are 

similar to the theoretical ones in [11]. 

 
 

Fig.1. Circuit realization of the chaotic system with no equilibrium NE6. 
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Fig. 2. Simulation results of the designed circuit for the NE6 system using Multisim software: a) 
1 2C Cv v−  phase 

portrait b) 
1 3C Cv v−  phase portrait c) 

2 3C Cv v−  phase portrait 



3.2. Circuit realization of one chaotic flow with stable equilibria 

An analog circuit emulating the chaotic flow SE1 with a stable equilibrium is illustrated in Fig. 3. 
The schematic consists of eleven resistors (from R1 to R11), three capacitors (C1, C2, and C3), and 
five operational amplifiers (from U1 to U5). By applying Kirchhoff’s law to the circuit in Fig. 3, 
the dynamics of the designed circuit is described by the circuit equations 
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where 
1
,Cv

2
,Cv

3
,Cv are the voltages across the capacitors C1, C2, and C3, respectively. The values 

of the electronic components in Fig. 3 are selected to match known parameters of the chaotic 
flow SE1 with a stable equilibrium: 

1 2 3 6 ,R R R k= = = Ω 5 3 ,R k= Ω 6 0.6 ,R k= Ω 7 1.5 ,R k= Ω 4 8 9 10 11 10 ,R R R R R k= = = = = Ω 1 2 3 1 .C C C nF= = =  

The proposed circuit in Fig. 3 was simulated using the electronic simulation package Multisim 
with initial conditions of ( ) ( ) ( )( ) ( )

1 2 2
0 , 0 , 0 4 , 2 , 0C C Cv v v V V V= − . The resulting chaotic attractors are 

shown in Fig. 4. 



 

Fig. 3. The proposed circuit which emulates the chaotic flow with a stable equilibrium SE1. 
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Fig. 4. Chaotic attractors exhibited by the circuit in Fig. 3: a) 
1 2C Cv v−  phase portrait b) 

1 3C Cv v−  phase portrait c) 

2 3C Cv v−  phase portrait 



3.3. Circuit realization of one chaotic flow with a line equilibria 

An analog circuit was also designed to realize the chaotic flow with a line equilibrium LE1. The 
schematic of the proposed circuit is shown in Fig. 5. The circuit equations, which are derived by 
applying Kirchhoff’s law to the circuit in Fig. 5, can be written as 

1

2

2

1 2 3

3

1 1 2 1 3

8

1 1 7

2 2 3 2

4 3 5 3 6 3

1
,

1 1
,

10

1 1 1
.

10 10

C
C

C
C C C

C
C C C C C

dv R
v

dt R C R

dv
v v v

dt R C R C

dv
v v v v v

dt R C R C R C

�
=�

�
�
� = − +	
�
�
� = − − −
�


�
(10) 

Four operational amplifiers, eight resistors, three capacitors, and three multipliers were used. The 
values of the components are 1 2 4 7 8 100 ,R R R R R k= = = = = Ω 3 6 10 ,R R k= = Ω 5 0.666 ,R k= Ω and 

1 2 3 1 .C C C nF= = =  Multisim simulations were implemented with the initial 

conditions ( ) ( ) ( )( ) ( )
1 2 2

0 , 0 , 0 0 , 0.5 , 0.5C C Cv v v V V V= . The resulting phase portraits are shown in Fig. 6. 

 

Fig. 5. Schematic of the designed analog circuit for the chaotic system with a line equilibrium LE1. 



c

b
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Fig. 6. Simulation results of the designed circuit for the LE1 system using Multisim software: a)
1 2C Cv v−  phase 

portrait b) 
1 3C Cv v−  phase portrait c) 

2 3C Cv v−  phase portrait 



3. 4. Discussion  

There are some precautions for designing an analog circuit that emulates the dynamics of a 
chaotic flow, especially when the attractor is hidden: 

a) The components of the analog circuit must be selected carefully to match the mathematical 
model. Choosing correct off-the-shelf discrete components is a practical challenge. For example, 
it is easy to change the parameters and the eigenvalues of the chaotic system with one stable 
equilibrium when inappropriate values of the electronic components are used. In such cases, the 
dynamics of the system can change radically. 

b) The limits of operational amplifiers and analog multipliers, such as saturation, power supply 
voltages, nonlinearities, frequency limitations, and acceptable inputs must be considered. For 
example in a chaotic system like NE4, the amplitudes of the variables are much greater than the 
other cases (see Fig. 1 in [11]). 

c) A special sub-circuit generating the initial conditions for the voltages on the capacitors should 
be implemented to provide the appropriate initial conditions. Setting appropriate initial 
conditions is essential for realizing a chaotic flow with coexisting attractors since such a circuit 
will not oscillate if the initial conditions are in the basin of the stable equilibrium. In fact, this is 
the main difference between chaotic circuits with hidden attractors and those with self-excited 
attractors. Since the attractor is hidden, it will not be observed when using initial conditions close 
to an equilibrium. 

d) By the abovementioned discussion, it seems that the chaotic flows with one stable equilibrium 
should not be suggested as student projects in the limit time of a course, since they are more 
difficult to construct (as we experienced). 

 

4. Conclusion   

Categorizing dynamical systems into systems with hidden attractors and systems with self-
excited attractors is a new topic in dynamical systems. We described three newly introduced 
families of chaotic systems with hidden attractors (chaotic attractors in dynamical systems 
without any equilibrium points, with only stable equilibria, and with a line of equilibria). We 
designed a circuit for one example of each family. We described the difficulties in implementing 
circuits with hidden attractors resulting from the necessity of carefully choosing component 
values and initial conditions. 
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