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Abstract

In this letter, a rigorous solution of the chaotic Lozi mapping is
given for some regions of the bifurcation parameters. The relevance of
this result is that while chaos has been proved for the Lozi mapping,
there has not previously been discussion of the possibility of finding a
rigorous formula for this solution. This important result is obtained
using the Jordan normal form defined for matrices.

Keywords: Lozi map, chaotic attractor, rigorous solution.
PACS numbers: 05.45.-a, 05.45.Gg.

1 Introduction

Many physical systems are known to be best represented by piecewise maps
[di Bernardo, et al.,1999; Hassouneh, et al., 2001; Banergee, et al., 1998;
Banerjee & Grebogi, 1999; Banerjee & Verghese, 2001; Banerjee, et al., 2004;
Rajaraman, et al., 1996; Tse, 2003; Dutta, et al., 1999]. Such maps [De-
vaney,1984; Lozi, 1978; Aharonov, et al., 1997; Ashwin & Fu, 2002] are inter-
esting for the development of the theory of dynamical systems with practical
applications [Scheizer & Hasler, 1996; Abel, et al.,1997]. For these maps,
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the discrete-time state space is divided into several compartments with dif-
ferent functional forms separated by borderlines. The simplest dissipative
piecewise time-delayed map with chaotic solutions is the well known Lozi
mapping [Lozi, 1978; Misiurewicz, 1980] given by½

xn+1 = 1− a |xn|+ byn
yn+1 = xn

(1)

where a and b are bifurcation parameters. This map is the subject of many
works focused on its various properties. Most of these works are collected
with detailed discussions in [Zeraoulia, 2013].

2 On a rigorous solution of the chaotic Lozi
mapping

Note that the Lozi map (1) can be rewritten as½
Xn+1 = AXn + C, if xn ≥ 0
Xn+1 = BXn + C, if xn ≤ 0

(2)

where Xn =

µ
xn
yn

¶
, A =

µ
−a b
1 0

¶
, B =

µ
a b
1 0

¶
, and C =

µ
1
0

¶
.

In this section, we give a rigorous formula for the chaotic solution of the
Lozi map (1) when a2 + 4b > 0, i.e., b > −a2

4
. Indeed, the matrix A has

two real and distinct eigenvalues λ1 = 1
2

√
a2 + 4b − 1

2
a and λ2 = −12a −

1
2

√
a2 + 4b. Hence, if we consider the Jordan normal form for the matrix A,

i.e., A = PJP−1, where P is the matrix whose columns consist of the two

eigenvectors v1 and v2 of the matrix A, then J is given by J =
µ

λ1 0
0 λ2

¶
.

The formula A = PJP−1 implies that An = PJnP−1 for all n ∈ N, and the
eigenvalues of An are the same as the eigenvalues of the matrix Jn. Here we

have P =
µ

λ1 λ2
1 1

¶
and P−1 = 1

λ1−λ2

µ
1 −λ2
−1 λ1

¶
. On the other hand,

the matrix B also has two real and distinct eigenvalues −λ1 and −λ2. Hence,
if we consider the Jordan normal form for the matrix B, i.e., B = QLQ−1,
where Q is the matrix whose columns consist of the two eigenvectors w1 and

w2 of the matrix B, then L = −J. Here we have Q =

µ
−λ1 −λ2
1 1

¶
and
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Q−1 = 1
λ1−λ2

µ
−1 −λ2
1 λ1

¶
.

To prove the boundedness of system (1), we assume that it is bounded
and then we find its bound. If xn ≥ 0, then we have X1 = AX0 + C and
X2 = A2X0 + (A+ I2)C, and by successive iterations we get

Xn+1 = P
¡
Jn+1P−1X0 +

¡
Jn + Jn−1 + ...+ I2

¢
P−1C

¢
If xn ≤ 0, applying the same method gives

Xn+1 = Q
¡
(−J)n+1Q−1X0 +

¡
(−J)n + (−J)n−1 + ...+ I2

¢
Q−1C

¢
Thus after some tedious calculations we obtain the next iteration solution
(xn+1, yn+1) of the Lozi mapping (1) as

µ
xn+1
yn+1

¶
=

⎧⎪⎪⎨⎪⎪⎩
µ

ξ1λ
n+2
1 + ξ2λ

n+2
2 + ξ3

ξ1λ
n+1
1 + ξ2λ

n+1
2 + ξ3

¶
, if xn ≥ 0µ

ξ4λ
n+2
1 + ξ5λ

n+2
2 + ξ6

ξ4λ
n+1
1 + ξ5λ

n+1
2 + ξ6

¶
, if xn ≤ 0

(3)

for any initial condition (x0, y0) ∈ R2 in the basin of attraction of the solution,
where (ξi)1≤i≤6 are given by⎧⎪⎨⎪⎩

ξ1 = − (1−λ1)x0+λ2(λ1−1)y0−1(λ1−1)(λ1−λ2) , ξ2 =
(1−λ2)x0+λ1(λ2−1)y0−1

(λ2−1)(λ1−λ2)
ξ3 =

1
(λ2−1)(λ1−1) , ξ6 =

1
(λ2+1)(λ1+1)

ξ4 = − (−1)n (1+λ1)x0λ2+λ2(1+λ1)y0−1
(λ1+1)(λ1−λ2) , ξ5 = (−1)n (1+λ2)x0+λ1(1+λ2)y0−1

(λ2+1)(λ1−λ2)
(4)

with the conditions λ1 − λ2 6= 0, λ1 − 1 6= 0, λ2 − 1 6= 0, λ1 + 1 6= 0, and
λ2 + 1 6= 0, that is,

S :
½

b > −a2
4
, b /∈ {a+ 1, 1− a}
0 < a < 2

(5)

If xn has a fixed sign for all n, then the solution is not chaotic since the
corresponding formula is the solution of a linear system given by (3). Hence
a chaotic attractor of the Lozi map is possible if xn has a mixed sign. This
claim depends on the location of a and b, and thus it is not a general rule for
identifying chaos.
The most important results available in the literature for the rigorous

proof of chaos in Lozi mappings (1) are given in [Misiurewicz, 1980], with a
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mathematical proof that the Lozi map (2) has a strange attractor Λa,b for
the range of parameters defined by

M :

½
0 < b < 1, a > 0, a > b+ 1

2a+ b < 4, b < a2−1
2a+1

, a
√
2 > b+ 2

(6)

and that the basin B (Λa,b) contains a neighborhood of Λa,b. The method of
the proof is based essentially on finding a trapping region for the Lozi map
(2) and then proving that this map has a hyperbolic structure.
Thus the rigorous formula given by (3) for the chaotic Lozi mapping is

possible when S ∩M is not empty, that is

S ∩M :

⎧⎨⎩ 0 < b < min
³
1, a

2−1
2a+1

´
, b /∈ {a+ 1, 1− a}

max
³
b+ 1, b+2√

2

´
< a < min

¡
2, 1

2
(4− b)

¢ (7)

To understood the mechanism for the distribution of points (xn, yn) in the
Lozi map (1), assume that x0 > 0. Then the next point is given by the first
equation of (3). In this case, x1 = ξ1λ

2
1 + ξ2λ

2
2 + ξ3. If x1 > 0, we continue

with the first equation of (3) to get the value of x2. If x1 < 0, then we use
the second equation of (3) to calculate x2 and so on...

3 Conclusion

In this letter, a rigorous solution of the chaotic Lozi mapping is given for
some regions of the bifurcation parameters. The result is determined by
using the Jordan normal form defined for matrices. This example shows that
it is possible to find rigorous solutions of other piecewise chaotic mappings
by using the same method. This method opens an interesting direction for
studying piecewise chaotic systems.
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