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This paper addresses a previously unexplored regime of three-dimensional dissipative chaotic flows in
which all but one of the nonlinearities are quadratic. The simplest such systems are determined, and their
equilibria and stability are described. These systems often have one or more infinite lines of equilibrium
points and sometimes have stable equilibria that coexist with the strange attractors, which are sometimes
hidden. Furthermore, the coefficient of the single nonquadratic term provides a simple means for scaling

the amplitude and frequency of the system.

Keywords:

Quadratic nonlinearities
Hidden attractor
Amplitude/frequency control

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Many of the common examples of dissipative chaotic flows in-
volve three-dimensional autonomous systems with quadratic non-
linearities, by which we mean to include cross-product terms like
xy in addition to squared terms like x%. For example, the classic
Lorenz system [1] has two quadratic terms and five linear terms,
while the Rossler system [2] has one quadratic term and six lin-
ear terms. The simplest such system has one quadratic term and
four linear terms [3], and it has been proved that chaotic systems
with fewer than five terms and with linear damping and quadratic
nonlinearities cannot exist [4]. A general class of system, with both
general linear and quadratic terms, was recently considered in [5]
since it represents one of the simplest systems capable of produc-
ing chaos. An unexplored regime involves chaotic systems in which
most of the terms are quadratic. We will identify the simplest
such systems and show that they require at least one nonquadratic
term to give chaos, but that one is a sufficient number to produce
many examples of strange attractors with unusual properties in-
cluding multiple line equilibria, hidden attractors, and a convenient
amplitude-frequency control parameter.

Such systems are of practical use because the amplitude/fre-
quency control knob provides a good secure key for secret com-
munication or replaces the extra amplifier or attenuator in radar
or other communication systems when the chaotic systems are
used as the signal sources. Systems with many nonlinearities are
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common in single-mode lasers [6], closed-loop convection [7], wa-
terwheels [8], plasma, and propagation of the dipole domains [9].

2. Chaotic flows with mostly quadratic terms

We consider the most general parametric 3-D form contain-
ing all possible quadratic nonlinearities except for a single non-
quadratic term f(x, y) that without loss of generality is placed in
the first (%) equation,

x=f(x,y)+ax* +ary® + a3z + asxy + asxz+agyz ~ (11)
y = a7x° +agy2 + agZ? + a10xy + a11xz +apyz (1.2)
z=a13%* + a14y* + a152° + a16xy + a17Xz + a1y z (1.3)

We further consider the simplest forms for f(x, y) given by

0 case A
1 case B

f&x,y)= 4x case C (2)
y caseD

As shown later, any multiplicative coefficient of f(x, y) can be set
to unity without loss of generality.

2.1. CaseA: f(x,y)=0

The simplest case contains only quadratic terms. Such a sys-
tem has nullclines that are planes passing through the origin so
that they intersect only at the origin or along one or more lines
passing through the origin. Thus there is either a single equilib-
rium point at the origin or one or more lines of equilibrium points
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stretching to infinity in both directions. In either case, there can-
not be an attractor of finite size (a limit cycle or strange attractor)
since there is no characteristic length to determine its scale. In-
deed, a linear rescaling of the three variables leaves the system
unchanged except for a change in the time scale. The origin can be
a weak attractor, but only by virtue of the nonlinearities since the
trace of the Jacobian matrix vanishes at the origin. Any periodic
solutions must be invariant cycles whose size and shape depend
on the initial conditions.

A simple example that illustrates the dynamics of the more
general case is one in which each variable depends only on the
other two,

x=yz (3.1)
j/ =Xz (32)
Z=—Xy (3.3)

This system has three perpendicular line equilibria, (x,0,0),
(0,y,0), and (0,0, z), whose eigenvalues are 11 =0, Ay 3 = =£xi,
+yi and +z, respectively. Trajectories follow the curves dy/dx =
x/y and dz/dx = —x/z, which can be integrated to give two con-
stants of the motion: y? —x? = y2 — x3 and z° + x> = 23 + x2.
Thus the dynamics are constrained to a one-dimensional mani-
fold that depends only on the initial conditions. The manifold is
a hyperbola when projected onto the xy-plane and a circle when
projected onto the xz- or yz-plane. Initial conditions in the planes
Xo = +yo at X} + z3 = z* remain in that plane and attract to a
point (0,0, F|z|) on the z-axis. Other initial conditions lie on pe-
riodic cycles whose frequency and amplitude depend on the initial
conditions and that are invariant since the trace of the Jacobian
matrix is zero. Thus limit cycles and strange attractors are not
possible for these systems.

2.2. CaseB: f(x,y)=1

An extensive search for the simplest chaotic system that con-
tains a single constant term found the example

x=1+yz (4.1)
z=y?+ayz (4.3)

Since this system has five terms and the variables x, y, z,
and t can be linearly rescaled without altering the dynamics,
it has a single parameter a that is arbitrarily put into the last
term. The system has two equilibrium points (0, ++/a, %) with
complex eigenvalues. When a = 2, the eigenvalues are 2.9793,
—0.0754 + 0.9714i and —2.9793, 0.0754 + 0.9714i, respectively,
and the system is chaotic with Lyapunov exponents (0.1519, O,
—2.3871) and a Kaplan-Yorke dimension of Dgxy =2 — A1/A3 =
2.0636. The corresponding attractor is shown in Fig. 1, and the
corresponding signals and their power spectra are shown in Figs. 2
and 3, respectively. The time series shows the rather disparate time
scales that lead to the broadband power spectrum. Since the sys-
tem has only even powers of the variables, it has the unusual
property that it is inversion invariant under the transformation
xX—> —Xx,y > —y,z—> —z,t -> —t), and thus it has a symmet-
ric attractor/repellor pair. This is probably the simplest example of
a system of the type considered in this paper.

The dynamics of this system are otherwise unremarkable, with
an elongated limit cycle born at a =0 and undergoing a series of
period-doubling bifurcations culminating in chaos at a ~ 1.0354.
The chaos persists to large values of a with occasional periodic
windows. For a ~2.0573 and a ~ 2.3236, there are homoclinic or-
bits on the attractor, but they do not appear to be associated with
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Fig. 1. Chaotic attractor from Eq. (4) with a =2 and initial condition (xo, ¥o, 20) =
(0,0,2).
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Fig. 2. Chaotic signals from Eq. (4) with a =2 and initial conditions (xo, yo,20) =
0,0,2).
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Fig. 3. Power spectrum of signals from Eq. (4) with a =2.
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Table 1
Chaotic flows with a single linearity in x.

Model Parameter values

admitting chaos

Equations Equilibria

Eigenvalues X0, Y0, Z0 LEs Dxy

SLy X=—x+ay?—xy a=2
y=xz b=1
7=2%—bxy

(0,0,0)

SLy X=—ax+xy a
y=2>+xz b
7=y% —byz

=2 (0,0,0)
=1 (—a/b,a,a)

SL3 x=x+ay?—22 a=2.4
y=x2—by? b=
z=xz

(0,0,0)

b 4 b
—aE7,0
SLy X=—x+by? +xz a=0.1
y=xz b=
Z=—axy +yz

0,0,2)

SLs X=—x+az? a=1 ( 0
y=22—bxz =2 (5.0, 1)
Z=xy—yz

0,0,-1) 34 0.1889 21120

0 —1.6864

0,0,-2) -2 0.2191
(—2.9311, 0.4656 = 1.5851i) 0 0
3 —2.2191

2.0987

(1,0,0) 0.0734 2.0463

(—0.4167,0.0833 £ 0.9091i) 0.9 0
(2.2103, —0.3770 — 0.4167) +0.6 —1.5866

0,0,z—-1) 8 0.2390 21713

0.7 —1.3956

0,-1,-y) 2 0.0748 2.0845

(0.2685, —0.6342 £ 0.2516i)

w
o

0 —0.8856

any bifurcation. A variant of the system in which the yz term in
the first equation is replaced with —y? has similar dynamics.

2.3. Case C: f(x,y) ==+x

When the nonquadratic term is a single linear (SL) function
of x, the simplest chaotic examples that were found have six terms.
Table 1 lists five such cases, chosen from a much larger list because
they have different numbers and types of equilibria, and Fig. 4
shows the corresponding attractors projected onto the xy-plane for
the given parameters that produce chaos. With six terms, there are
two parameters, chosen to be 1 where possible, or otherwise to
be a small integer or a decimal fraction with the fewest possi-
ble digits. The simplest system, SL;, has a single equilibrium with
two eigenvalues zero, while the most complicated system, SLs, has
an infinite line of equilibrium points plus a single isolated equi-
librium. Many of the equilibria have a largest eigenvalue that is
zero for the chosen parameters, and thus the stability is often de-
termined by the nonlinearities. All the cases for which the largest
real part of the eigenvalue is zero appear to be unstable when
nonlinearities are considered except for Model SLs where the line
of equilibrium points in nonlinearly stable in the sense that initial
conditions that start in its vicinity forever remain near their start-
ing point. Four of the five cases have negative x in the X equation
as expected for a dissipative system, but Model SL; has a posi-
tive x, which would normally imply anti-damping, but the —by?
nonlinear damping term in the y equation overwhelms the linear
anti-damping. Dissipative systems with linear anti-damping are not
widely known and have been relatively little studied. This case has
three equilibrium points, all unstable, and a reflection invariance
about the z =0 plane in which all three of the equilibria lie, as
well as a symmetric pair of strange attractors. All other cases are
asymmetric.

Another common feature in systems with mostly quadratic non-
linearities is that the dynamics often have two disparate time
scales, making the equations stiff and hard to integrate. In addi-
tion to the case in Fig. 2, another more extreme example is Model
SLs where there is a fast growing oscillation in the yz-plane fol-
lowed by a slow relaxation oscillation in the x-direction.

24. CaseD: f(x,y)=y
When the nonquadratic term is a linear function of y, the sim-

plest chaotic examples that were found have five terms, one of
which with a single equilibrium at the origin and all eigenvalues
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Fig. 4. State space diagram for the cases in Table 1 projected onto the xy-plane.

zero is shown as Model SLg in Table 2. The other six systems in
the table have six terms and were chosen from a much larger list
because they have different numbers and types of equilibria. Fig. 5
shows the corresponding attractors projected onto the xy-plane.
The simplest of these systems, SL;, has three equilibrium points,
while the most complicated system, SLi», has two infinite paral-
lel lines of equilibrium points plus a single isolated equilibrium.
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Table 2
Chaotic flows with a single linearity in y.
Model Equations Parameter values Equilibria Eigenvalues X0, Y0, 20 LEs Dxy
admitting chaos

SLg k=y—2? a=09 (0,0,0) (0,0,0) 0 0.1304 2.0332
y=—axz 0 0
7=x—yz 1.4 —3.9246

SLy Xx=—y—yz a=14 (0,0,0) (0,0,0) 0 0.1340 2.2441
y=x>+axz b=1 0,1/b, 1) (—2.7937, 0.8969 + 2.0511i) 1 0
z=22+byz (a,1/b, —1) (0.0714, —0.5357 + 13.99251) -0.7 —0.5489

SLg x=y—y? a=03 (0,0,0) (0,0,0) 0 0.0337 21324
y=az>+xy b= 0,1,0) (0, +i) 1.3 0
7=—x% — bxy (-1,1,1//a) (—1.5302, 0.2651 4 0.8035) -1 —0.2544

(-1,1,-1/a) (0.4098, —0.7049 + 1.4752i)

SLg x=y a=04 (0,0,2) 0, +/=2) 0 0.0749 21014
y=ay? —xz b=1 4 0
z=x*+xy—bxz 5 —0.7391

SL1g X=y+axz a=0.2 (0,0,2) (0, ZEVz 100z VZ,ZO‘“"’Z) —0.2 0.0280 21167
y=xy—xz b=3 (-1, 5 5 (0.3565, —2.5116 + 7.9885i) 0 0
z=x+bxy 0 —0.2397

SLip k=y+y?—ayz a=09 (x,0,0) (0,0,0) 0.8 0.1401 21634
y=-22+byz b=1 0,-1,0) (—0.7113,0.3556 + 1.1311i) -2 0
Z=xy ©, 3. 7229) (0.9911, —5.4956 + 8.4079i) 0 —0.8573

SLiz X=—y+x*>—y? a=03 (0,0,2) 0, +4/2) 0 0.0096 2.0362
y=—xz b=1 0,-1,2) 0, £4=2) -0.3 0
7 =ax? + bxy (7%, %,0) (—0.5690, —0.0452 + 0.2351i) 2 —0.2660

Most of the equilibria have a largest eigenvalue that is either zero
or negative for the chosen parameters, and thus the stability is of-
ten determined by the nonlinearities. All the isolated equilibrium
points (points that are not part of a line of equilibria) that are
neutrally stable according to their eigenvalues appear to be non-
linearly unstable. Some of the lines of equilibrium points with a
zero eigenvalue appear to be nonlinearly stable over a portion of
their length. All of these systems listed are asymmetric, but sym-
metric cases also exist.

3. Hidden attractors

Systems with many quadratic terms tend to have multiple equi-
libria, sometimes even stable ones coexisting with the strange
attractor, an example of which is SL;. Usually limit cycles and
strange attractors are associated with an equilibrium point that has
lost its stability but that remains in its basin of attraction. Such
attractors are called “self-excited”, and they can be found by start-
ing with an initial condition in the neighborhood of the unstable
equilibrium. Nearly all strange attractors that have been studied
are of this type, typical examples of which are in [1,10-12]. Limit
cycles and strange attractors whose basins of attraction do not in-
tersect with small neighborhoods of any equilibrium points are
called “hidden” since there is no way to choose an initial condition
that guarantees that they will be found [13,14]. Chaotic systems
without any equilibria [15] or with only stable equilibria [16] are
obvious examples of hidden attractors, but some systems have only
unstable equilibrium points that are far from the basin of the hid-
den attractor. Furthermore, any chaotic system that has an infinite
line of equilibrium points is likely to have a hidden strange attrac-
tor since most points in the neighborhood of the line will usually
lie outside the basin of the strange attractor [17]. Such hidden at-
tractors are important in engineering applications because they can
lead to unexpected and potentially disastrous behavior.

An example of a system with not one, but two hidden strange
attractors is Model SL3. This system has symmetry about the plane
z =0 and a symmetric pair of strange attractors that lie above
and below the plane, respectively. It has three unstable equilibrium

points that lie in the z =0 plane. Since that plane does not inter-
sect either of the strange attractors or their basins of attraction, it
is not possible to show a two-dimensional plane in which all three
equilibrium points and the two basins appear. However, Fig. 6
shows a cross section of the basins in the x =y plane where two
of the equilibrium points are shown as small open circles. Fig. 7
shows a similar plot in the x = —y plane where the other equilib-
rium point appears. None of the equilibria lie near the basins of
the strange attractors, and all orbits that start in their vicinity are
unbounded. Thus both strange attractors are hidden from all three
equilibria.

4. Controllability of amplitude and frequency

Usually, a dynamical system has amplitude parameters and bi-
furcation parameters, which influence the size of the attractor and
its topology, respectively. For the above systems, the coefficient of
the single nonquadratic term f(x, y) controls both the amplitude
and frequency of the signals generated by the systems since it is
the only term whose dimensions are different from the remaining
quadratic terms. By contrast, in order to have only amplitude con-
trol, all of the quadratic terms as well as any constant terms must
be controlled.

As an illustration, consider a simultaneous amplitude and fre-
quency control of Eq. (4) by the transformation x — x/c, y — y/c,
z— z/c, t — ct. Then Eq. (4) becomes

x=c*+yz (5.1)
y=—xz (5.2)
7=y +ayz (53)

Thus, if the constant term in the X equation changes according
to 2, it will scale the amplitude and frequency according to c.
For those systems with a single linear term such as Model SL7,
a transformation x — x/c, y — y/c, z— z/c, t — ct gives simulta-
neous amplitude and frequency control. The system becomes
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Fig. 5. State space diagram for the cases in Table 2 projected onto the xy-plane.

X=—cy—yz (6.1)
y=x>+axz (6.2)
z=2*+byz (6.3)

Therefore, the coefficient ¢ of y in the X equation scales the am-
plitude and frequency according to c.

For comparison, we show partial pure amplitude control by
changing the coefficient of a nonlinear term [18]. For Model SL;,
there is a one-dimensional amplitude control parameter in the sec-
ond equation,

X=—ax+xy (71)
y=22+cxz (7.2)
z=y*—byz (7.3)

5

Fig. 6. Cross sections in the plane x =y of the basins of attraction (red and blue,
respectively, in the web version) for the two hidden strange attractors whose cross
sections are shown in black for Model SL3. Two of the three unstable equilibria
(shown as small open circles) lie outside both basins as does the third equilibrium
(shown in Fig. 5), and all orbits that start in the vicinity of these equilibria are
unbounded.

ss_ T R 7T A T )

X

Fig. 7. Cross sections in the plane x = —y of the basins of attraction (red and blue,
respectively, in the web version) for the two hidden strange attractors whose cross
sections are shown in black for Model SL;. Two of the three unstable equilibria
(shown as small open circles) lie outside both basins as does the third equilibrium
(shown in Fig. 4), and all orbits that start in the vicinity of these equilibria are
unbounded.

The coefficient ¢ in the xz term controls the amplitude of x ac-
cording to % while the amplitude of y and z remain unchanged,
and thus it is not a good bifurcation parameter. This can be proved
by the transformation x — %x, y — ¥y, z— z. The coefficient of
a quadratic term can also give two-dimensional amplitude control
when the system has rotational symmetry [18].
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5. Discussion and conclusions

When considering systems with mostly quadratic terms, new
regimes of chaotic flows appear. A variety of simple dynamical
systems with four or five quadratic terms and a single constant
or linear term have been found, which have different numbers and
types of equilibria. Many systems have a line of equilibrium points,
and some of them have a line and additional isolated equilibrium
points. One of the systems described even has two lines of equi-
librium points coexisting with another isolated equilibrium point.
The variety of equilibria makes the origin of the chaotic attrac-
tor ambiguous and sometimes hidden. In addition, the coefficient
of the nonquadratic term provides a good control knob for am-
plitude and frequency adjustment. Meanwhile, the coefficients of
the nonlinear terms are useful bifurcation parameters, although
some combinations of them can provide partial or total amplitude
control. Finally, we note that most of the systems described have
a two-dimensional parameter space, and only a single combina-
tion of those parameters has been examined for each system. Thus
these systems likely have additional dynamic regions that would
be worth further detailed study.
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