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A chaotic flow has an involutional symmetry if the form of the dynamical equations remains
unchanged when one or more of the variables changes sign. Such systems are of theoretical and
practical importance because they can exhibit symmetry breaking in which a symmetric pair
of attractors coexist and merge into one symmetric attractor through an attractor-merging
bifurcation. This paper describes the simplest chaotic examples of such systems in three
dimensions, including several cases not previously known, and illustrates the attractor-merging
process.
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1. Introduction

There has been continued interest in finding new
simple examples of systems of autonomous ordinary
differential equations whose solutions exhibit chaos
and that satisfy constraints on their dimensional-
ity, number and types of nonlinearities, Lyapunov
spectrum, symmetries, number of wings or scrolls,
number and types of equilibria, bifurcations, and
routes to chaos. Although an entire book has been
devoted to symmetries in chaos [Gilmore & Letel-
lier, 2007], little systematic work has been done to
identify the simplest such examples that are invari-
ant with respect to a change in sign of one or more of
the variables. Such examples are of interest because
they can exhibit symmetry breaking and offer the
possibility that a symmetric pair of attractors will
exhibit an attractor-merging crisis as some bifur-
cation parameter is changed. Especially rare are
situations in which the system is chaotic before
and after the merging. It is therefore of interest to
find the simplest examples for which such behavior
occurs.

An involution is a mathematical function f that
is its own inverse, the simplest nontrivial example
of which is f(x) = −x since f(f(x)) = x for all
x in the domain of f . We focus here on three-
dimensional dynamical systems governed by three
autonomous first-order ordinary differential equa-
tions in the variables x, y, and z since such sys-
tems describe the simplest continuous flows that
can exhibit chaos. In such a case, the elementary
involutional symmetries are inversion, rotation, and
reflection, corresponding to invariance of the equa-
tions with respect to changing the sign of three, two,
and one variable, respectively. The trivial identity
transformation in which none of the variables are
changed is also a symmetry, but it is not interesting
and will be ignored. Nonlinear differential equations
that are invariant with respect to such transfor-
mations often lead to a symmetric pair of coexist-
ing attractors in addition to the symmetric ones
that are typically observed and studied. This is an
example of spontaneous symmetry breaking, and it
is common in systems throughout nature. In the
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interest of simplicity, we will restrict the discussion
to cases in which the governing equations are poly-
nomial functions and seek the simplest such poly-
nomials that give the desired behavior.

2. Inversion Invariant Systems

Systems that are invariant with respect to changes
in all three variables (also called parity invariant)
can only contain terms that are odd powers of the
variables. Since linear systems cannot exhibit chaos,
the simplest examples of such systems are those that
contain linear and cubic terms.

One of the oldest such system is the Moore–
Spiegel [1986] oscillator used to model the irregular
variability in the luminosity of stars and given in
simplified form by

ẋ = y

ẏ = z

ż = −z + ay − x2y − bx

(1)

whose attractor is shown in Fig. 1 for a = 9 and
b = 5. The system can be written more compactly
as a jerk equation:

...
x = −ẍ + (a − x2)ẋ − bx.

The same equation was subsequently studied by
Auvergne and Baglin [1985] as a model of the ion-
ization zone in a star. The two-fold symmetry is

Fig. 1. Moore–Spiegel attractor from Eq. (1) with a = 9
and b = 5.

evident from the figure in which there are two loops
despite the fact that the only equilibrium is the
one at the origin. However, this system appears not
to have coexisting attractors for any choice of the
parameters a and b.

A variant of Eq. (1) given by

ẋ = y

ẏ = z

ż = −z − ay − x3 + bx

(2)

or in jerk form,
...
x = −ẍ−aẋ−x3 + bx, was studied

by Coullet et al. [1979], and it does admit coexisting
strange attractors probably because it has two addi-
tional equilibria at (±√

b, 0, 0) that merge into the
one at the origin for b = 0. Figure 2 shows that the
strange attractors become limit cycles just before
and after the merging, after which a new symmet-
ric strange attractor appears. Such behavior is not
unusual for systems of this type.

More recently, Malasoma [2000] proposed the
simplest dissipative jerk equation that is parity
invariant:

...
x = −aẍ + xẋ2 − x. This system is

chaotic over most of the range 2.0278 < a < 2.0840
except for periodic windows such as a dominant
period-3 window near a = 2.043, and it does exhibit
the merging of two coexisting strange attractors
into one at a = 2.0644 . . . . However, the basin of
attraction is extremely small, and the coexisting
attractors are thin and nearly coincident as shown
in Fig. 3, making it difficult to observe the merging
except by way of Poincaré sections. In an extensive
search, no simpler examples of inversion invariant
chaotic systems were found.

3. Rotation Invariant Systems

For systems that are invariant with respect to
rotation, the possibility exists of cases with only
quadratic nonlinearities in which two coexisting
strange attractors merge into one. Without loss
of generality, we consider quadratic systems that
are invariant under the transformation (x, y, z) →
(−x,−y, z), corresponding to a 180◦ rotation about
the z-axis, the most general form of which is

ẋ = a1x + a2y + a3xz + a4yz

ẏ = b1x + b2y + b3xz + b4yz

ż = c0 + c1z + c2x
2 + c3y

2 + c4z
2 + c5xy.

(3)
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Fig. 2. Attractor merging from Eq. (2) with b = 2.
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Fig. 3. Coexisting Malasoma strange attractors with
a = 2.08.

The most familiar example of an equation of
this form is the Lorenz [1963] system

ẋ = σ(y − x)

ẏ = −xz + rx − y

ż = xy − bz

(4)

which is a special case of Eq. (3) with a1 = −σ, a2 =
σ, a3 = 0, a4 = 0, b1 = r, b2 = −1, b3 = −1, b4 =
0, c0 = 0, c1 = −b, c2 = c3 = c4 = 0, c5 = 1. For the
usual parameters of σ = 10, r = 28, and b = 8/3
the Lorenz system has a single symmetric strange
attractor, and that seems to be the case for any
positive values of the parameters.

However, in a previously unexplored region of
parameter space such as σ = 0.053, r = 0, and
b = −0.3, the Lorenz system admits a pair of
coexisting strange attractors. As σ is increased,
there is a broad region where the only solutions
are unbounded, until a new larger pair of almost

Fig. 4. Coexisting strange attractors in the Lorenz system with r = 0 and b = −0.3.
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Fig. 5. Attractor merging for Eq. (5).
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touching strange attractors are born in a homoclinic
bifurcation around σ = 0.256. These attractors dis-
appear in a sequence of inverse period doublings
leading to a pair of limit cycles that coexist with
a larger symmetric limit cycle that period-doubles,
forming a new coexisting symmetric strange attrac-
tor at about σ = 0.279 as shown in Fig. 4. All three
of the attractors are destroyed in a homoclinic bifur-
cation for σ slightly greater than 0.279. The chaotic
regions for the Lorenz attractor with b < 0 and
r = 0 are very narrow with small basins of attrac-
tion, but the dynamics are very rich in this new
regime and deserving of further study despite being
somewhat nonphysical.

Probably the simplest rotationally invariant
chaotic flow is the diffusionless Lorenz system
[van der Schrier & Maas, 2000; Munmuangsaen &
Srisuchinwong, 2009]

ẋ = y − x

ẏ = −xz

ż = xy − R

(5)

derived from Eq. (4) by taking the limit r, σ → ∞
but with finite R = br/σ2. This system is one of the
five cases first discovered in an exhaustive search
for three-dimensional chaotic systems with only
five terms and two quadratic nonlinearities [Sprott,
1994]. It is chaotic over most of the range 0 < R < 5
with coexisting strange attractors in the approxi-
mate range 4.418 < R < 5. As shown in Fig. 5, the
system has a symmetric pair of linked limit cycles at
R = 5.4, and these limit cycles undergo a sequence
of period doublings as R is decreased, leading to
a symmetric pair of linked strange attractors at
R = 4.9. Such linking is apparently very common in
these systems, although it usually goes unnoticed in
the usual two-dimensional projections. The strange
attractors grow in size, eventually touching along
their edges, creating a single symmetric attractor
at about R = 4.418. At R = 4.6 the attractors
are strongly entangled despite residing in separate
basins of attraction.

This picture is very different from the mental
image one might have of two attractors first touch-
ing at a single point, but it is apparently common
since the Malasoma attractors in Fig. 3, which are
also linked, behave similarly. Prior to the merging,
the two attractors have an intricate fractal basin
boundary whose cross-section at z = 0 is shown
in Fig. 6 for R = 4.7. Fractal basin boundaries

Fig. 6. Cross-section of the fractal basins of attraction in
the z = 0 plane for Eq. (5) with R = 4.7. The black lines are
cross-sections of the corresponding strange attractors that
nearly touch their basin boundaries.

are a necessary consequence of the merging of two
strange attractors along their entire edges. The
cross-sections of the attractors are shown in black
in the figure, and where the attractors appear to
intersect their basin boundary, there is a small gap
separating the two attractors, and this gap remains
small in other sections such as at z = ±7 and at
y = 0 in the xz-plane.

A variant of Eq. (5) in which the xy term
is replaced by y2 also leads to chaotic solutions
[Sprott, 1994] over most of the range 0 < R < 2.7,
but it does not appear to admit multiple attractors.

A system almost as simple as Eq. (5) but with
one extra term and thus two parameters is obtained
by adding a damping term −bx to the Nose–Hoover
oscillator [Nose, 1991; Hoover, 1995]

ẋ = y − bx

ẏ = yz − x

ż = a − y2

(6)

which for a = 1 is chaotic over most of the range
0.67 < b < 1.12 as well as at b = 0 where the sys-
tem is conservative. For b > 1.3 the system has a
single symmetric limit cycle that bifurcates into a
symmetric pair of linked limit cycles as shown in
Fig. 7. The limit cycles undergo a period doubling
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Fig. 7. Attractor merging for Eq. (6) with a = 1.
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Fig. 8. Attractor “kissing” for Eq. (8).
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route to chaos, which onsets around b = 1.1 pro-
ducing a symmetric pair of linked strange attractors
that merge into a single symmetric strange attrac-
tor around b = 1.06 in a manner similar to the case
in Fig. 5.

4. Reflection Invariant Systems

Systems that are invariant with respect to reflec-
tion also allow multiple strange attractors with only
quadratic nonlinearities. In fact, any attractors in
such systems necessarily exist as a symmetric pair.
Without loss of generality, we consider quadratic
systems that are invariant under the transformation
(x, y, z) → (−x, y, z), corresponding to symmetry
about the x = 0 plane, the most general form of
which is

ẋ = a1x + a2xy + a3xz

ẏ = b0 + b1y + b2z + b3x
2 + b4y

2 + b5z
2 + b6yz

ż = c0 + c1y + c2z + c3x
2 + c4y

2 + c5z
2 + c6yz.

(7)

The 17-dimensional parameter space is replete
with examples of cases with a symmetric pair of
strange attractors. However, these attractors can
never merge because the trajectory cannot cross the
x = 0 plane since ẋ = 0 at x = 0, although we might
say that they “kiss” since they can come arbitrarily
close to one another (and often do).

Perhaps the simplest such system, not previ-
ously known, with the fewest number of terms is

ẋ = x − xy

ẏ = z

ż = −y − az + x2.

(8)

This is actually a two-parameter system, but it
is possible to set one of the parameters to unity,
in which case the system has a symmetric pair of
strange attractors for a = 0.3. This system has three
equilibria, one at the origin (0, 0, 0) and the oth-
ers at (±1, 1, 0). The one at the origin is unstable
for all values of a, and the other two are stable for
a > 2. As a decreases, a supercritical Hopf bifur-
cation occurs at a = 2, whereupon a symmetric
pair of stable limit cycles are formed. With further
decrease of a, these limit cycles undergo successive
period doublings, leading to a symmetric pair of
strange attractors at about a = 0.7263 that nearly

touch one another on either side of the x = 0 plane
as shown in Fig. 8 in what might be called attractor
“kissing”.

5. Conclusion

Dynamical systems often possess symmetries in
the form of their equations but have solutions for
which the symmetry is broken. In many impor-
tant cases, the result is a symmetric pair of attrac-
tors over some range of the parameters. These
attractors usually merge to form a single symmet-
ric attractor in an attractor-merging bifurcation.
Especially interesting are examples in which the
attractor is chaotic before and after the merging.
Such behavior seems to be very common and occurs
in simple three-dimensional systems of autonomous
ODEs with quadratic and cubic nonlinearities.
The simplest such examples for the three basic
involutional symmetries have now been identified
and described.
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