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Abstract

Scattering systems are important in physical problems.We perform an anatomy of the

phase space structure to identify the rich dynamical structure produced by the interaction

of Hamiltonian and dissipative dynamics.

1 Introduction

There exists a variety of physically interesting situations described by smooth maps. Dissipative

systems received only limited attention, in part because it was observed in these systems that

orbits eventually tended toward stable fixed points or periodic cycles. Interesting behavior
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appeared in the study of van der Pol’s equation, which describes an oscillator with nonlinear

damping. Cartwright and Littlewood found that for certain parameter values, this equation had

periodic orbits of different periods and exhibited a rich array of dynamical behaviors. Their

results showed the existence of an attracting set more complicated than a fixed point or an

invariant curve. Levinson performed detailed analysis for a simplified model. His work inspired

Smale, who introduced the general idea of a horseshoe, which Levi used later to explain the

observed phenomena.

We investigate basins of attraction in a scattering map, a planar quadratic map which

exhibits a panoply of interesting phenomena as dissipation is added. A great effort has been

devoted to the characterization of this kind of chaos. Many authors have insisted on the presence

of unstable periodic trajectories and homoclinic orbits as a consequence of chaotic behavior in

dissipative and Hamiltonian systems. From a mathematical point of view, a small part of the

phase space corresponds to a stable regular domain, outside of which there is an infinity of

unstable orbits that form the backbone of a nonattracting chaotic set. The appearance of a

multiplicity of periodic orbits is the hallmark of the existence of a chaotic set.

We study a planar quadratic scattering map [6],

T1 :

 xn+1 = a[xn − 1
4
(xn + yn)

2 − b(xn + yn)]

yn+1 =
1
a
[xn +

1
4
(xn + yn)

2]
(1)

where xn, yn are real variables and a, b are real positive parameters. T1 has a constant Jacobian

determinant J = 1 − b. Thus for b = 0, the map is conservative and globally area-preserving

with a weak dissipative effect for small positive values of b. The map (1) has only two fixed

points, (4(−a
2+a−ab)(ab+1−a)
(1−a2)(1+a) , 4(ab+1−a)

2

(1−a2)(1+a)) and (0, 0). Both of these fixed points undergo bifurca-

tions in parameter space for positive and negative values of a, but we will consider the case

constrained by the parameter a > 1. It is easy to verify that T1 has a unique inverse expressed

as follows:

T−1 :

 xn+1 =
1
a
[xn +

1
4a(1−b)2 (xn + a2yn)

2 − b
1−b(xn + a2yn)]

yn+1 = −1
a
[xn +

1
4a(1−b)2 (xn + a2yn)

2 − 1+b
1−b(xn + a2yn)]

(2)

Seoane et al. have determined the fractal dimension of this dynamical system, revealed a
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crossover phenomenon (see Seoane et al. for more detail in [6-7]), and insisted on the influence

and the importance of unstable periodic orbits in understanding the scattering process. They

pointed out the fractal structure by using a mathematical technique previously used in studying

chaotic scattering via the construction of a Cantor set. The physical interest of these results,

according to the authors, can be potentially useful for particle advection in open chaotic do-

mains. Chaos has physical significance. The authors explained that escaping particles in such

systems can be seen, for instance, as inertial particles in fluids with open flows where dissipation

plays the role of the mass of the inertial particles, because it is well known that the advective

dynamics of idealized particles in two-dimensional and incompressible flows can be described

as Hamiltonian.

The dynamics of Eq.1 are sensitive to dissipative perturbations from the precise Hamiltonian

structure. We investigate the type of bifurcations that will occur in such a map with a principal

attractor that dominates the attraction basin. On the one hand, we have the dissipation which

can lead to several coexisting attractors for some values of the parameter a. These periodic

attractors are generated through saddle-node (fold) bifurcations as a is varied. On the other

hand, we have to deal with homoclinic bifurcations. The dynamical system is smooth and

described by a Hamiltonian map which contains Kol’mogorov-Arnol’d-Moser (KAM) islands.

This paper is about the routes to chaotic scattering, and it explains the phenomenon of attractor

generation.

We begin by considering a two-dimensional map that contains the key features of chaotic

scattering (see Yalcinkaya and Lai [8]). The map is given by:

T2 :

 xn+1 = a[xn − 1
4
(xn + yn)

2]

yn+1 =
1
a
[xn +

1
4
(xn + yn)

2]
(3)

The target region is centered at the origin. The parameter a is taken greater than 1. This map

captures most of the important features of conservative chaotic scattering experiments. The au-

thors provide the essential ingredient necessary for understanding this conservative Hamiltonian

system.

This quadratic map has one fixed point at the origin (0, 0) (unstable) and another at x = ay,

y = 4(a− 1)/(a+1)2 (stable for 1 < a < 3+
√
8 and unstable for a > 3+

√
8). The map (3) is

discussed in [4] by Lau et al. who proved that the dynamics are associated with the phenomenon
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known under chaotic scattering. It is singular and nonhyperbolic due to the presence of KAM

tori. For a = 4, they observed the disappearance of the period-4 island that surrounds the

central region of the stable fixed point, and similarly at a = 5.1, the central island is destroyed

by the period-3 bifurcation.

We emphasize that our aim is to study the map (1), and we focus on the effects of pertur-

bations to its Hamiltonian structure. This map can be considered as a model giving rise to

an interesting set of bifurcations with a fractal structure, and with a constant birth of island

chains of periods varying between 6 to 19, forming an attracting set of saddles and foci.

Our numerical evidence includes the following: First we establish the hierarchy of fixed

points and k-order periodic points. Then we describe the parameter plane in which these

points undergo a saddle-node (fold) bifurcation (instead of a saddle-center bifurcation) or period

doubling (flip) bifurcation (see Fig. 1). Finally, we consider negative values for a and study

the properties of the map including KAM tori and period doublings.

The two fixed points do not undergo identical sets of bifurcations in the parameter plane.

We first choose the parameters so that the origin (0,0) is a saddle, while the second equilibrium

can experience bifurcations, and we do this by having a > 1, b > 0. We also choose negative

values of a, which is instructive, with the occurrence of a period-doubling bifurcation so that

the origin remains a saddle while the other point bifurcates.

From the points of view of [6], a chaotic scattering set may be envisioned as the intersection

of a stable manifold and an unstable manifold where the stable or the unstable one consists of

an uncountably many fractal set that provides chaos and is responsible for this phenomenon.

The two manifolds oscillate more and more wildly in a homoclinic tangle (also known as a

stochastic layer, see Fig. 2) causing the sensitive dependence on initial conditions in this layer.

There is much interest in describing the motion in the layer and in estimating its width as a

function of the perturbation.
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Fig. 1: Saddle-node Bifurcation curves in black and flip in red

Fig. 2: A scattering layer, KAM surfaces with a binary horseshoe (see [3])

2 Some properties of invariant curves

Hénon in [2] showed that any second-degree area-preserving planar map xn+1 = axn + byn + cx2n + dxnyn + ey2n

yn+1 = exn + fyn + gx2n + hxnyn + iy2n
(4)

with a center at the origin can be reduced to this map by a linear change of coordinates:
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 un+1 = un cosα− (vn − u2n) sinα

vn+1 = un sinα− (vn − u2n) cosα
(5)

Hamiltonian system orbits are regular. They are smooth curves in the phase plane referred

to as KAM circles or KAM tori. KAM theory tells us that KAM tori with irrational rotation

numbers persist in the perturbed system but are gradually destroyed as the perturbation is in-

creased. Tori with rational numbers disintegrate immediately. The Poincaré—Birkhoff theorem

explains that only an even number of periodic points remain, forming Birkhoff periodic orbits.

Fixed points and periodic points are either centers or saddles, and they alternate on the chains

of periodic points in Birkhoff periodic trajectories, forming structures known as island chains.

Around each centre are KAM tori interspersed with more island chains. The stable and unsta-

ble manifolds of a saddle become tangled, generating homoclinic points from their intersections

(see Fig. 3). Under the effect of the perturbation, KAM curves become scarce, and island

chains predominate. Hénon showed that the island chains visible in the phase portraits depend

on the choice of the parameter α (corresponding to the choice of the two parameters a and b

in T1).

a = 3; b = 0.001 a = 3.5, b = 0.001

Fig. 3: Two phase portraits of the map 1. Island chains prominent are of periods 6, 9, and

14

A numerical plot of the stable and unstable manifolds of the saddle point at (0, 0) shows that

the orbit sweeps around the stable fixed point (4(−a
2+a−ab)(ab+1−a)
(1−a2)(1+a) , 4(ab+1−a)

2

(1−a2)(1+a)). These manifolds

of the period-1 saddle in T1 are shown intersecting in a homoclinic tangle. The horseshoe is

clearly shown in the neighborhood of the saddle point. The map T1 exhibits the complexity that

was glimpsed by Hénon of Hamiltonian dynamical structure in the Hénon area-preserving map

(5). This complexity is explained in the Poincaré—Birkhoff theorem and KAM theorem [1, 5].
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One has two fixed points and periodic points, the first is a stable node whose basin of attraction

has for its external boundary the stable invariant manifold of the saddle point S (0, 0). Island

chains of period-8 (represented in red small pink domains in Fig. 3) and period-9 (represented

by the gray domains) are most prominent, with the stable and unstable invariant manifolds in

yellow color.

2.1 Complexity and Basins

A sequence of phase portraits of the map (1) is considered, varying the two parameters a and

b. In Fig. 4, complicated structures in dissipative and conservative cases are observed for very

small values of b.

a = 2.7, b = 0.00008

(a)

a = 2.9, b = 0.0001

(b)

a = 3, b = 0.001

(c)

a = 3, b = 0.001

(d)
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a = 4.52, b = 0.001

(e)

a = 4.52, b = 0.0001

(f)

a := −1.3; b = 0.001

(g)

a := −.7; b = 0.001

(h)

a := −.67; b = 0.0001

(i)

a := −.67; b = 0

(j)

Fig. 4: The sequence shows phase portraits. (d) is a zoom of a part of (c). (j) invariant

circles formed and island chains.

The evolution of the phase portraits is given directly in the figures for the parameters (a, b).

We can see the period-doubling bifurcation which is evident for negative values of a. For a < 0,
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the behavior of the map changes, and the stable fixed point bifurcates into a period-2 orbit

coexisting with the principal saddle at the origin, and in (j) the saddle connection is clearly

visible with a double binary horseshoe, which depends sensitively on the map and the parameter

a.

3 Conclusion

In this paper, specific bifurcations arising in Hamiltonian maps have been studied. These

bifurcations concern the evolution of nonattracting chaotic sets, and one sees the creation and

annihilation of Birkhoff periodic orbits at saddle-node bifurcations, with their own basins. In

such maps, chaotic sets can occur at bifurcations, giving rise to intersections of invariant stable

and unstable manifolds of the principal saddle. The map’s dynamics are extremely rich with

its structure influenced by Hamiltonian and dissipative characters and the interaction of their

effects and dominated by the chaotic scattering. Important changes can occur with small

changes of parameter values.
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