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Abstract

In this paper, we obtain non-existence conditions for horseshoe-
type chaos in 3-D quadratic continuous-time systems. This kind of
chaos in polynomial ODE systems is characterized by the non-existence
of homoclinic and heteroclinic orbits.
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1 Introduction

It is well known that the famous analytic method for proving chaos in au-
tonomous systems employs the two Shilnikov theorems [1-2], and their sub-
sequent embellishments and slight extensions given in [3-4]. The resulting
chaos in this case is called horseshoe-type or Shilnikov chaos. Several works
have proved the existence of chaos in some 3-D quadratic autonomous sys-
tems [5-6-7-8-9-10-11]. The analysis is based on the method of undetermined
coefficients to find homoclinic and heteroclinic orbits. It was conjectured in
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[11] that the two Shilnikov theorems can be used to classify chaos in 3-D poly-
nomial ODE systems. The conjecture claimed that for such systems, there
exist four kinds of chaos: homoclinic chaos, heteroclinic chaos, a combina-
tion of homoclinic and heteroclinic chaos and chaos of other types. Examples
includes the attractor described in [13]. This example is a 3D quadratic flow
which simply does not have any fixed point (thus, cannot have any homoclinic
and heteroclinic trajectories).

In this paper, we propose non-existence conditions for horseshoe-type
chaos in 3-D quadratic continuous-time systems. The obtained conditions
are four simple inequalities. Based on this result, we give some examples of
chaotic attractors in polynomial ODE systems characterized by the existence
of equilibrium points and by the non-existence of homoclinic and heteroclinic
orbits.

As a motivation for this result, let us consider the nth-order autonomous
system: x′ = f (x) , where the vector field f = (f1, f2, ..., fn)

T : Rn −→
Rn belongs to class Cr(r ≥ 1), x = (x1, x2, ..., xn)

T is the state variable
of the system, and t ∈ R is the time. Suppose that f has at least one
equilibrium point P. Then we have the following definitions: (a) The point
P = (p1, p2, ..., pn) is called a hyperbolic saddle focus for system (1) if the
eigenvalues of the Jacobian A = Df (x) evaluated at P are γ, α + iβ, where
αγ < 0 and β ̸= 0. (b) Consider the nth-order autonomous system x′ = f (x),
where the vector field f = (f1, f2, ..., fn)

T : Rn −→ Rn belongs to class
Cr(r ≥ 1), x = (x1, x2, ..., xn)

T is the state variable of the system, and
t ∈ R is the time. (c) Consider the nth-order autonomous system x′ = f (x),
where the vector field f = (f1, f2, ..., fn)

T : Rn −→ Rn belongs to class
Cr(r ≥ 1), x = (x1, x2, ..., xn)

T is the state variable of the system, and t ∈ R
is the time. (d) A homoclinic orbit γ (t) refers to a bounded trajectory of
system (1) that is doubly asymptotic to an equilibrium point P of the system,
i.e., limt−→−∞ γ (t) = limt−→+∞ γ (t) = P. The next definition requires the
existence of at least two equilibrium points P1 and P2. (e) A heteroclinic
orbit δ (t) is similarly defined except that there are two distinct saddle foci,
P1 and P2, being connected by the orbit, one corresponding to the forward
asymptotic time, and the other to the reverse asymptotic time limit, i.e.,
limt−→+∞ δ (t) = P1 and limt−→−∞ γ (t) = P2.

The main motivation of the theorem proved in [12] is the search of suf-
ficient conditions for the non-existence of homoclinic and heteroclinic orbits
in a system of the form x′ = f (x) as follows: Suppose that there exists at
least one integer j ∈ {1, 2, ..., n} such that the component fj (x) satisfies
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∃α < 0 : fj (x) ≥ α,∀x ∈ Rn. Then system (1) cannot have homoclinic and
heteroclinic orbits. From this result it is important to remark that if system
(1) is chaotic, then its chaos is not of horseshoe-type. We note that the
assumptions of the theorem proved in [12] do not contradict the assumption
that the system x′ = f (x) has an equilibrium point.

2 On the non-existence of horseshoe-type chaos

in 3-D quadratic continuous-time systems

The most general 3-D quadratic continuous-time system is given by


x′ = a0 + a1x+ a2y + a3z + a4x

2 + a5y
2 + a6z

2 + a7xy + a8xz + a9yz
y′ = b0 + b1x+ b2y + b3z + b4x

2 + b5y
2 + b6z

2 + b7xy + b8xz + b9yz
z′ = c0 + c1x+ c2y + c3z + c4x

2 + c5y
2 + c6z

2 + c7xy + c8xz + c9yz
(1)

where (ai, bi, ci)0≤i≤9 ∈ R30 are the bifurcation parameters. Note that in this
paper we use the following simple result available in most textbooks on linear
algebra: The polynomial Ax2+Bx+C has no real zeros if and only if A > 0
and B2 − 4AC < 0, or A < 0 and B2 − 4AC < 0, and thus this polynomial
is strictly positive or strictly negative.

By using the theorem proved in [12], it is evident that any system of the
form (1) with the components z′ = c0 + c4x

2, z′ = c0 + c5y
2, z′ = c0 + c6z

2

with c0 < 0 cannot have homoclinic and heteroclinic orbits. The same result
holds true for the cases: x′ = a0 + a4x

2, x′ = a0 + a5y
2, x′ = a0 + a6z

2 and
y′ = b0 + b4x

2, y′ = b0 + b5y
2, y′ = b0 + b6z

2. Also, the same result is true for
the total and partial combinations of these cases.

For the general case (1) and by using the above criterion proved in [12]
for j = 3, we have

c0 + c1x+ c2y + c3z + c4x
2 + c5y

2 + c6z
2 + c7xy + c8xz + c9yz ≥ α (2)

with α < 0 for all (x, y, z) ∈ R2, that is

c4x
2+(c1 + yc7 + zc8)x+

(
c5y

2 + c9yz + c2y + c6z
2 + c3z − α + c0

)
≥ 0 (3)

Inequality (3) is possible for all (x, y, z) ∈ R3 if and only if the coefficient
c4 of the term x2 is positive and the discriminant ∆1 of the null equation
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corresponding to (3) is strictly negative, i.e.,{
c4 > 0

∆1 = ξ1y
2 + ξ2y + ξ3 < 0

(4)

The discriminant ∆1 is strictly negative if ξ1 < 0 and ∆2 = ξ22 − 4ξ1ξ3 < 0,
that is {

ξ1 < 0
∆2 = ξ4z

2 + ξ5z + ξ6 < 0
(5)

The discriminant ∆2 is strictly negative if{
ξ4 < 0

∆3 = ξ25 − 4ξ4ξ6 < 0
(6)

where

ξ1 = c27 − 4c4c5
ξ2 = 2c7 (c1 + zc8)− 4c4 (c2 + zc9)

ξ3 = (c1 + zc8)
2 − 4c4 (c6z

2 + c3z − α + c0)

ξ4 = (4c4c9 − 2c7c8)
2 − 4ξ1 (c

2
8 − 4c4c6)

ξ5 = −2 (2c1c7 − 4c2c4) (4c4c9 − 2c7c8)− 4 (2c1c8 − 4c3c4) ξ1
ξ6 = −16c4ξ1α + ξ7

ξ7 = (2c1c7 − 4c2c4)
2 − 4 (c21 − 4c0c4) ξ1

(7)

Thus the conditions for (3) are
c4 > 0
ξ1 < 0
ξ4 < 0

∆3 = ξ25 − 4ξ4ξ6 < 0

(8)

We have ∆3 = 64ξ1ξ4c4α +
(
ξ25 − 4ξ4ξ7

)
< 0 if α <

−(ξ25−4ξ4ξ7)
64ξ1ξ4c4

. In terms

of the bifurcation parameters (ci)0≤i≤9 ∈ R10, the inequalities of (8) are
equivalent to 

c4 > 0

c5 >
c27
4c4

c6 >
−((4c4c9−2c7c8)

2−4ξ1c
2
8)

16ξ1c4

α <
−(ξ25−4ξ4ξ7)

64ξ1ξ4c4

(9)
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since −
(
ξ25 − 4ξ4ξ7

)
> 0, c4ξ1 < 0 and 64ξ1ξ4c4 > 0. If conditions (9) hold,

then system (1) cannot have homoclinic and heteroclinic orbits and therefore
cannot have horseshoe-type chaos if it is chaotic. We note that the above
result still holds true if we replace the conditions for (ci)0≤i≤9 ∈ R10 in (9) by
the conditions for (ai)0≤i≤9 ∈ R10 or (bi)0≤i≤9 ∈ R10. Also, the above analysis
is true if the above conditions are commenced from the inequalities c5 > 0
or c6 > 0 just like the case for c4. An elementary example that satisfies the
above conditions (9) is the one studied in [12] and given by

x′ = a(y − x)
y′ = −ax− byz
z′ = −c+ y2

(10)

For system (10) we have a1 = −a, a2 = a, a0 = ai = 0, i = 3, ..., 9, b0 = bi = 0,
i = 2, .., 8, b1 = −a, b9 = −b, c0 = α = −c, c5 = 1, ci = 0, i = 1, ..., 9 with
i ̸= 5. For a = 40, b = 33, and c = 10, the system (10) has a chaotic attractor,
and the Lyapunov exponents for these values are {2.6721, 0,−15.7588}.

3 Conclusion

In this paper, we obtain non-existence conditions for horseshoe-type chaos
in 3-D quadratic continuous-time systems. Proving rigorously such a kind
of chaos is a very interesting challenge for future investigation since the two
Shilnikov theorems cannot apply for those systems in the absence of homo-
clinic and heteroclinic orbits.
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