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Abstract

In this study, chaotic partial differential equations (PDEs) were numerically solved using a parallel algorithm on
graphics processing units (GPU). This new method will aid in our search for simple examples of chaotic PDEs.
Computational time using the GPU was compared to other languages such as Matlab and PowerBASIC. The GPU
algorithm was optimized using shared memory and a data padding method was analyzed. We report that we have
simulated selected chaotic PDE candidates with greater spatial resolution and speed using the GPU.
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1. Introduction

It is well known that chaos exists in systems of or-
dinary differential equations (ODEs). The typical 3-
dimensional examples include the Lorenz system and
the Rössler system. However, while chaos in ODEs is
a mature and well studied field, the study of chaos in
partial differential equations (PDEs) remains rather new
and unexplored [1]. This is in part is due to the complex-
ity of the theory and computational time needed to accu-
rately simulate such systems, since PDEs are an infinite
set of coupled ODEs. The existence of chaos in PDEs
is relevant in the study of turbulence as well as some
quantum phenomena. However, proving a PDE exhibits
chaos with specific boundary conditions remains a dif-
ficult problem and in most cases nearly impossible an-
alytically. Therefore, computer based simulations cur-
rently provide the best environment to study such sys-
tems. Since there are currently few proven examples
of chaotic PDEs, finding more examples will aid in de-
velopment of a better mathematical theory as well as
providing new models for physical events. A previous
study involving a search for the simplest chaotic PDE
concluded that the Kuramoto-Sivashinsky equation was
the simplest example of a chaotic PDE after a 16 month
search on a standard computer [2]. However, this search
was limited by the size of the search space and in its
ability to simulate possible chaotic PDEs with high spa-
tial resolution.

Graphics processing units (GPUs) are an emerging tech-
nology which provide the parallel processing for a frac-
tion of the cost of the equivalent computer network.
Physics simulations and differential equations have pre-
viously been studied using GPU technology resulting
in great acceleration[3, 4, 5, 6, 7]. With application to
solving PDEs, the GPU is especially good because the
system of ODEs can be integrated over time in parallel.
Using the parallel processing ability of GPUs to numer-
ically solve PDEs, it would be possible to find more ex-
amples of chaotic PDEs that could have previously been
missed. In this paper, we present a method to numeri-
cally solve PDEs and implement this method in different
ways on a GPU to utilize its parallel processing abil-
ity. We then present a few examples of PDEs that may
exhibit chaos as well as a simulation of the Kuramoto-
Sivashinsky equation, which is known to be chaotic [8].
The results are benchmarked and compared to the same
simulation done on an standard desktop computer.

2. The GPU Framework

The GPU has been around since the very first per-
sonal computers, but until recently, its primary function
was limited to processing data for output on a video
monitor. However, with NVIDIA Compute Unified De-
vice Architecture (CUDA), the GPU can be used as a
general purpose computational device. Some benefits
of GPU programming with CUDA include:
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• Eliminating overhead from graphics API for non-
graphics based applications

• Reducing global memory bandwidth limitation by
utilizing on chip memory

• Allowing a standard and more flexible method of
writing to memory

• Automatic scalability for multiple GPU systems
using the grid architecture

Computation on the GPU using CUDA involves pro-
cessing threads in parallel organized in blocks of grids.
The CPU can execute a kernel for one grid at a time.
The grid is broken into an array of 1, 2, or 3 dimensional
blocks each with a unique block identification. Further-
more, each block is split into an array of threads with
a unique thread identification. A GPU multiprocessor
(MP) can execute a single block of threads at a time. In
a grid with blocks of the same dimension, processing
can be done using all MPs in parallel. Each MP has a
Single Instruction, Multiple Data (SIMD) architecture,
which means each thread processor in a MP executes the
same operation, but on different data in memory. When
a block of threads is executed on a MP, it is first split
into SIMD groups of equal size called warps. The MP
can then process a warp of threads in 4 clock cycles.
The specifications for an NVIDIA Tesla C870, which
was used in this study, can be seen in Table 1.

Table 1: NVIDIA Tesla C870 CUDA 1.0 specifications
Multiprocessors 16

Processors per multiprocessor 8
Clock speed 1.35 GHz
Warp Size 32

Maximum active blocks 8
Maximum active warps 24

Maximum active threads 768
Maximum block dimension 512x512x64
Maximum grid dimension 65535x65535x65535

Threads in a block have access to many types of
memory including global, textured, constant, shared,
and local. However, for simulating PDEs, we will only
be concerned with global, shared, and constant memo-
ries. Global memory has read/write permissions from
both the host computer and the GPU. It is often very
large (many gigabytes) depending on the type of GPU,
however, its access by each multiprocessor has limited
memory bandwidth. Shared and constant memory have
much higher bandwidths than global memory because

they are located in each multiprocessor. Constant mem-
ory is written by the host and read by the GPU through a
constant cacher while shared memory can only be read-
/written to by the GPU. More information about the
GPU architecture can be found in NVIDIA’s program-
ming guide [9].

In addition to memory bandwidth limits, to optimize
an algorithm, one must be concerned with the number
of clock cycles certain floating point operations will use
as seen in Table 2.

Table 2: Operations and Clock Cycles

Operation Number of clock cycles
Floating point add/subtract 4 cycles

24-bit multiplication 4 cycles
32-bit multiplication 16 cycles

Floating point square root 32 cycles
Floating point division 36 cycles

Modulus operator 60 cycles

3. Methods

3.1. The Method of Lines
The GPU PDE solver was generated using the

method of lines [10]. First, an approximation is made
for the spatial derivatives using a five-point stencil with
a central difference. We will utilize the notation Ux =
∂U
∂x , Uxx = ∂2U

∂x2 , etc. This gives the following approxi-
mation [11],

Ux =
−U(x + 2k, t) + 8U(x + k, t) − 8U(x − k, t) + U(x − 2k, t)

12k
+ O(k5) (1)

Uxx =
−U(x + 2k, t) + 16U(x + k, t) − 30U(x, t) + 16U(x − k, t) − U(x − 2k, t)

12k2
+ O(k4) (2)

Uxxx =
U(x + 2k, t) − 2U(x + k, t) + 2U(x − k, t) − U(x − 2k, t)

2k3
+ O(k2) (3)

Uxxxx =
U(x + 2k, t) − 4U(x + k, t) + 6U(x, t) − 4U(x − k, t) + U(x − 2k, t)

k4
+ O(k2) (4)

An example of how the five point stencil utilizes par-
allel threads and memory accessing can be seen in Fig-
ure 1. The result is a set of coupled ODEs for each
spatial grid line with spatial step size k. The 4th order
Runge-Kutta method can be used to integrate the ODEs,

U(x, t + h) = U(x, t) +
1
6

h(a1 + 2a2 + 2a3 + a4) (5)

where

a1 =
∂

∂t
U(x, t) (6)

a2 =
∂

∂t
U(x + 0.5a1, t + 0.5h) (7)
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Figure 1: Five-point stencil on the GPU utilizing the gather and scatter memory access methods.

a3 =
∂

∂t
U(x + 0.5a2, t + 0.5h) (8)

a4 =
∂

∂t
U(x + 0.5a3, t + h) (9)

for a temporal step size h.

3.2. Simulated PDEs and Initial Conditions
Candidate chaotic PDEs were selected from a previ-

ous work [12] as seen in Table 3. They are organized
from PD1 to PD13 based on the algebraic complexity
of the system [12]. To generate a comparison of the
processing time of the GPU versus the CPU, each PDE
was simulated with L=100 and a spatial dimension of
256 coupled ODEs. Periodic boundary condition were
used for all cases such that U(0, t) = U(256, t). The cal-
culations were benchmarked by measuring the time for
simulating each PDE for one million iterations with a
fixed time step h = 0.001.

To determine whether a PDE exhibited chaos, the
largest Lyapunov exponent (LLE) was calculated using
the CPU. This was done by perturbing the initial condi-
tion and measuring any exponential growth in the solu-
tion for each time iteration. For each step, the perturbed
system was scaled by the size of its initial perturbation
from the original solution [6]. The average of the log of
the maximum expansion was taken in the limit as time
approaches infinity. If the LLE was convergent and pos-
itive, the system was determined to be chaotic.

3.3. Optimizing the Method of Lines for the GPU
An overview of how the method of lines was im-

plemented on the GPU can be seen in Figure 2. To

Table 3: Selected chaotic PDE candidates and initial conditions [12]
Name Equation Initial Condition

PD1 Ut = UUx 0.1sin
(

2πx
L

)
− 0.1

PD2 Ut = UUxxx 0.1 − 0.1sin
(

8πx
L

)
PD3 Ut = (U − 1)Ux sin

(
2πx
L

)
PD4 Ut = (U + 1)Uxxx sin

(
4πx
L

)
PD5 Ut = (U + 1)Ux − 0.1Uxxx 0.25sin

(
4πx
L

)
PD6 Ut = (1 − Uxx − 2U)Ux 0.04sin

(
2πx
L

)
− 0.55

PD7 Ut = (0.05Uxxxx − U2)Ux 2 + 0.2sin
(

16πx
L

)
PD8 Ut = −UUx − Uxx − Uxxxx sin

(
2πx
L

)
PD9 Ut = (Uxxx − U2

xx)U 0.1sin
(

16πx
L

)
PD10 Ut = −U2Ux − Uxx − Uxxxx 1 + sin

(
18πx

L

)
PD11 Ut = −U3Ux − Uxx − Uxxxx sin

(
2πx
L

)
PD12 Ut = −UUx − Ux − Uxx − Uxxxx sin

(
2πx
L

)
PD13 Ut = 1 + (1 − U3Uxxx)Uxxx sin

(
16πx

L

)

determine the fastest method for simulating the PDEs,
a number of different algorithms were used on the GPU.

• Method 1
In this method, the initial condition is generated
by the host CPU and passed to the GPU through
global memory. Each ODE is processed by a dif-
ferent thread using one block. Modular operators
are used to access data with periodic boundary
conditions. Data is written and read using only
global memory.

• Method 2
This method is the same as in method 1, however,
data is loaded and stored in shared memory and
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1 #define N 256
2 __constant__ int L = 100;
3 __constant__ float k = L/N;
4 __constant__ float dt = 0.001;
5 __shared__ float Uo[N];
6 __shared__ float a1[N];
7
8 int dim = blockDim.x*gridDim.x;
9 int i0 = blockDim.x*blockIdx.x + threadIdx.

x;
10
11 //copy from global to shared memory
12 for(int i=i0; i<N; i+=dim){
13 Uo[i] = Initial_Condition[i];
14 }
15
16 // calculate a1
17 for(int i=i0; i<N; i+=dim){
18 float U_m2 = Uo[((i+ N-2)%N)];
19 float U_m1 = Uo[((i+N-1)%N)];
20 float U_0 = Uo[i];
21 float U_p1 = Uo[((i+N+1)%N)];
22 float U_p2 = Uo[((i+N+2)%N)];
23
24 a1[i] = Derivative(U_m2 , U_m1 , U_0 , U_p1 ,

U_p2 , k);
25 }

Figure 3: Example of finding a1 for the Runge-Kutta integration with-
out data padding.

then written back to global memory. A sample of
this method can be seen in Figure 3.

• Method 3
In NVIDIA’s Programming Guide it is suggested
that, ”modulo operations are particularly costly
and should be avoided if possible” [9]. There-
fore, in this method, the initial condition is padded
to eliminate the use of the modulus operator for
data accessing. Data is loaded and stored in shared
memory and then written back to global memory.
The source code for this method is shown in Fig-
ure 4 and a diagram of how the data is padded and
process through the integration is shown in Figure
5.

These methods were implemented using Matlab,
PowerBASIC 6 Console Compiler, and C++ with
NVIDIA CUDA and run on a computer with the fol-
lowing specifications: Dual Intel E5420 Xeon CPUs at
2.50 GHz with 4 GB DDR2 RAM at 800 MHz and a
NVIDIA Tesla C870.

4. Results and Discussion

4.1. Kuramoto-Sivashinsky
The Kuramoto-Sivashinsky equation (PD8) is a PDE

that is often used in numerical simulation of turbulence

1 #define N 256
2 __constant__ int L = 100;
3 __constant__ float k = L/N;
4 __constant__ float dt = 0.001;
5 __shared__ float Uo[N+4];
6 __shared__ float a1[N+4];
7
8 int dim = blockDim.x*gridDim.x;
9 int i0 = blockDim.x*blockIdx.x + threadIdx.

x;
10
11 //copy from global to shared memory
12 for(int i=i0; i<N; i+=dim){
13 Uo[i+2] = Initial_Condition[i];
14 }
15
16 // reassign outer array indices
17 Uo[0] = Uo[N+1];
18 Uo[1] = Uo[N+2];
19 Uo[N+2] = Uo[2];
20 Uo[N+3] = Uo[3];
21
22 // calculate a1
23 for(int i=i0; i<N; i+=dim){
24 float U_m2 = Uo[i];
25 float U_m1 = Uo[i+1];
26 float U_0 = Uo[i+2];
27 float U_p1 = Uo[i+3];
28 float U_p2 = Uo[i+4];
29
30 a1[i+2] = Derivative(U_m2 , U_m1 , U_0 ,

U_p1 , U_p2 , k);
31 }

Figure 4: Example of finding a1 for the Runge-Kutta integration using
the data padding method.

as well as describing wave processes in active and dis-
sipative systems. This equation was simulated using a
time step of h = 0.015 and with 128 ODEs. A typical
spatiotemporal graph demonstrating chaos for PD8 can
be seen in Figure 6. The GPU results agree with those
performed on the host CPU. The LLE for the PD8 was
determined to be positive based on the calculation done
on the CPU, which indicates the system exhibits chaos.

4.2. PD2 and PD13

PDE candidates, PD2 and PDE13, were simulated
with a spatial dimension of 128 shown in Figures 7
and 8, respectively. The GPU was used to increase the
spatial dimension of these systems without a significant
loss in speed. Using more ODEs to simulate PD2 and
PD13 indicates that these systems are not chaotic in
the spatially continuous limit. This is supported by
the strong correlation between the number of ODEs
used and the smallest wavelength calculated by a
spatial Fourier transform. The smallest wavelengths
for PD2 and PD13 decrease inversely with the number
of ODEs. If an infinite number of ODEs were used,
the small wavelength oscillation would shrink to zero,
preventing the onset of chaos. These systems are,

4



Figure 2: Block diagram of the host CPU and GPU operation

however, examples of numeric chaos as indicated by
their positive LLE.

4.3. Lyapunov Exponents

The LLE is important in determining whether a sys-
tem is chaotic. The LLEs for the systems described
were all calculated to be positive, which indicates they
are chaotic. In order to accurately determine the LLE,
a small perturbation is needed from the initial condi-
tion, which can approach the limits of single precision
floating point numbers on the GPU. Also, the perturbed
system must be routinely scaled such that it maintains
the same vector magnitude as the unperturbed system,
which requires a serial addition and square root. For

these reasons, the LLE could not be efficiently calcu-
lated on the GPU. Instead, data was passed to the CPU
for the LLE calculation. However, this was subject to
global bandwidth limitations which reduced the calcu-
lation speed. Since the LLE is only important for de-
termining if a system is chaotic, it is not a necessary
calculation each iteration. For implementing a search
for new chaotic systems, the LLE could be calculated
only at specific times. However, chaos can exist in very
small parameter windows of a PDE and if the LLE is
not calculated often enough, it is possible to dismiss the
system. The answer for the tradeoff between computa-
tional time and characterizing chaos is not obvious and
highly dependent on the PDEs being analyzed.
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Figure 5: Data padding method

Figure 6: Simulation of PD8 using 128 coupled ODEs

4.4. Data Padding and Computational Time

Using the data padding method as shown in Figure
5 resulted in a maximum speedup of 62.42% using 128
ODEs on the CPU shown in Table 4. The data padding
speedup was shown to increase with an increasing num-
ber of ODEs used in the simulation. This is because
the ratio between the latency of the modulus operator
and latency of the array reassignment improves with in-
creasing array size. However, when implemented on
the GPU, data padding resulted in a loss of speed. As
shown in Table 5, method 3 was slower than method 2
despite the elimination of modular operations through

Figure 7: PD2 simulated using 128 ODEs.

data padding. This indicates that the latency in copy-
ing data to the edges of an array overpowers any ben-
efit gained from eliminating modular arithmetic on the
GPU. Utilizing shared memory in methods 2 and 3 re-
sulted in an increase in speed over method 1 because
of increased memory bandwidth. However, the maxi-
mum speed of the GPU could not be obtained because
the gather and scatter memory accessing inherent in the
five-point stencil resulted in bank conflicts between ad-
jacent threads.
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Table 4: Effect of data padding on processing time using Matlab.

Num. of ODEs: L k Without Padding With Padding Speedup Iterations/Sec
16 10 0.0001 0.6094 0.5000 21.88% 20000
32 100 0.0001 1.0625 0.8281 28.31% 12075
64 100 0.0001 2.0781 1.3281 56.47% 7529
128 100 0.0001 3.9844 2.4531 62.42% 4076
256 100 0.0001 7.5156 4.7188 59.27% 2119
512 100 0.0001 14.8438 9.3438 58.86% 1070

1024 200 0.0001 29.7031 18.9063 57.11% 528

Figure 8: PD13 simulated using 128 ODEs.

Table 5: Benchmark results comparing Methods 1-3 as previously
described for PD8 using 256 coupled ODEs, L=100, t=0 to t=10000,
h=0.001 measured in iterations per second.

Method: 1 2 3
Itr/sec: 33222 181623 160984

4.5. GPU Benchmarks and Speedup

The GPU based PDE solver could generate spa-
tiotemporal plots of the selected PDEs faster than
previous methods using only serial CPU operations.
In Table 6, a comparison of iterations per second for
the fastest GPU algorithm is compared to two other
programming languages, Matlab and PowerBASIC 6
Console Compiler. Using method 2, the GPU was 85.7x
faster than Matlab while only 9.5x faster than Power-
BASIC. However, our results agree with the results
obtained from similar studies using a finite difference
method to solve differential equations [7, 13]. Through
our study, we were able to identify some important
considerations to maximize the utility of the GPU for
numerically solving PDEs.

Table 6: Benchmark results for PD8 using 256 coupled ODEs, L=100,
t=0 to t=10000, h=0.001. Comparison between Matlab, PowerBA-
SIC, and the optimized GPU simulation in iterations per second.

Method: Matlab PowerBASIC GPU Opt.
Itr/sec: 2119 19104 181623

Important factors for optimizing speed:

• Maximize calculation time on GPU - Transferring
data between the GPU and host computer will en-
counter latency and is limited by the global mem-
ory bandwidth. This becomes important when de-
termining when to check the Lyapunov exponent
of a system.

• Utilize GPU shared memory - GPU shared mem-
ory has much smaller latencies than global mem-
ory, but has a limited size, which is a problem with
large systems of ODEs [14].

• Choose the number of ODEs as a multiple of the
GPU block size - Maximum speedups were ob-
tained using a number of ODEs in multiples of 16,
which maximizes the number of calculations per-
formed per warp. Also, increasing the number of
ODEs did not proportionally reduce the computa-
tional time as was previously shown [7].

• Data padding or data redundancy, while efficient
on the CPU, proved to be detrimental to the com-
putational time on the GPU.

5. Conclusion

Our results indicate that some previously suspected
chaotic PDEs are examples of numeric chaos and will
not hold with decreasing spatial step size. The use of a
GPU greatly decreases the processing time to integrate
the selected PDEs. Data padding proved to be beneficial
on the CPU, but slowed the GPU calculation. Calculat-
ing the LLE was more efficient on the CPU than the
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GPU. Implementing a search for chaos would require a
delicate balance between calculating the LLE and com-
putational speed.
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