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Abstract

In this paper, we show numerically that the so-called HIV therapy
system is regular and converges to a stable equilibrium point for most
realistic values (in the medical sense) of its bifurcation parameters.
Although there is no rigorous proof of this convergence property, it is
conjectured that the system is not chaotic for all positive bifurcation
parameters.
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1 Introduction

Today, the human immunode…ciency virus (HIV) is the most dangerous and
killing disease, and there are millions of infected people. The dynamics of the
HIV therapy system is given by the following …rst-order nonlinear di¤erential
equation [Filter et al., 2005; Xia & Moog, 2003; Hammond, 1993; Wein et
al., 1997; de Boer & Perelson, 1998; Wein et al., 1998; Dixit & Perelson,
2004; Stra¤ord et al., 2000; Fishman & Perelson, 1994; Essunger & Perelson,
1994; Berry & Nowak, 1994; Lipsitch & Nowak, 1995; Nowak et al., 1995;
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Courchamp et al., 1995; Iwasa et al., 2005; Nowak et al., 1997; Wodarz et
al., 1999; Gilchrist et al., 2004; Jafelice et al., 2004]:

8
<

:

0 =  (0 ¡ )¡ 
0 =  (0 ¡ ) + 
0 =  (¡ )

(1)

where (      ) 2 R6 are positive bifurcation parameters. The variables
 ()   (), and  () are the concentrations of the CD4 lymphocyte popula-
tion, the CD8 lymphocyte population, and the HIV-1 viral load, respectively.
The positive quantities 0 and 0 are the normal unperturbed concentrations
of the CD4 and CD8 lymphocyte population, respectively. The system (1)
has two equilibria
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>:

1 = (0 0 0)

2 =
³
0+0
(+)

 0+0
+

 (0¡0)
0+0

´
= ( )

(2)

in which 1 is stable when 0 ¡ 0  0 and unstable when 0 ¡ 0  0
From our numerical calculations, we observe that system (1) always converges
to the equilibrium point 2. The stability of 2 can be studied using the
Jacobian matrix given by:

 (2) =

0

@
¡¡  0 ¡

0 ¡+  
 ¡ ¡ 

1

A (3)

The characteristic polynomial at 2 is given by 
3+2++ = 0 where
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 = + ¡ +  ¡  + 

 = ¡ 2 ¡ ¡ ¡  +  +  +  + + 

 = ¡+  + + 
(4)

The exact values of the eigenvalues can be obtained using Cardano’s method
for solving a cubic equation, but due to the complicated formulas in this case,
we use the Routh-Hurwitz stability criterion, leading to the conclusion that
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the real parts of the roots  are negative if and only if   0,   0, and
 ¡   0 Thus 2 is stable if and only if
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+ ¡  +  ¡  +   0

 ¡ + +   0

1 + 2 + 3 + 4 + 5 + 6 + 7  0

(5)

where
8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

1 = 
2¡ 2 + 2 ¡ 2+ 2 ¡ 22

2 = 2 ¡  + 
2 ¡ 2 + 2 ¡ 2+ 22

3 = ¡2 + 2 + 
22 ¡ 232 + 22

4 = ¡
23 + 22 + 2 ¡ 22 + 2 ¡ 2

5 = 
23 ¡ 22 + 22 +  22 ¡ 

6 = 
2 ¡ 2¡  + 2 + 22

7 = ¡2 + 
32 ¡ 22 +  ¡ 32

(6)

We note that it is not easy to solve such inequalities. The simple way is to
consider some particular values of the eight parameters and vary each one of
them as shown in the next section.

2 Is the HIV therapy system chaotic?

It was claimed in [Charlotte & Bingo, 2010] that the dynamics of the HIV
system (1) is chaotic by calculating its Lyapunov exponents. Apparently this
solution is only transiently chaotic. In fact, we show numerically that system
(1) is not chaotic for  = 025  = 50  = 025  = 001  = 0006 0 =
1000 0 = 550 (0) = 0 (0) = 0 (0) = 003, and 0    50 as shown
in Fig. 1.
In this case, there is only a single stable equilibrium with a negative largest

Lyapunov exponent () and no indication of multistability. Numerical calcu-
lations con…rm that this stable equilibrium is 2 =

¡
10000+165000

+500
 2 5+41 25
0001 5+0075

 0418 75
2 5+41 25

¢

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Figure 1: Bifurcation diagram of the variables  , and  (with the vari-
ation of the largest Lyapunov exponent ) of system (1) plotted versus
 2 [0 50] for  = 025  = 50  = 025  = 001  = 0006 0 = 1000 0 =
550 (0) = 0 (0) = 0 and (0) = 003

It is easy to verify that the …rst and the second components of 2 are
increasing, and the third one is decreasing with respect to the variations
of  that is 

()

¡
10000+165000

+500

¢
= 335000

2+1000+25000
 0 

()

¡
2 5+41 25

0001 5+0075

¢
=

1 675£105

302+3000+75000
 0 and 

()

¡
0418 75

2 5+41 25

¢
= ¡ 1 046 9

(2 5+41 25)2
 0. The graphs

of these functions (versus ) are in agreement with the bifurcation diagrams
shown in Fig. 1. This method is also used for all other bifurcation parame-
ters to show the convergence of system (1) to its equilibrium point 2 To
prove this result, we have from the above analysis

8
>>>>><

>>>>>:

 = 33250+1 662 5£105

5000(20+330)

 = 6 749£109+2 842 4£1082+3 391 3£1063+5 075 9£1010

500 000(+500)(20+330)2

 = 16750+83752
4000(+500)

(7)
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Figure 2: Bifurcation diagram of the variables  , and  (with the variation
of the largest Lyapunov exponent ) of system (1) plotted versus  2 [0 1]
for  = 50  = 025  = 10  = 001  = 0006 0 = 1000 0 = 550 (0) =
0 (0) = 0 and (0) = 003

so that 2 is stable if and only if

8
>>>>><

>>>>>:

33250+1 662 5£105

20+330
 0

16750+83752
+500

 0

3 644 6£1011+1 685 1£10102+2 702 3£1083+1 160 4£1064+2 623£1012

1000 000(+500)(20+330)3
 0

(8)

which proves that 2 is stable for all   0 The same analysis can be done
for the other parameters, and the behavior of system (1) can be seen in Figs.
2–8.
In addition, we examined approximately 107 instances of (1) with ran-

dom values of the eight parameters, chosen from a Gaussian distribution
with mean 1 and variance 1, and did not …nd a single case with a positive
Lyapunov exponent. Thus we conclude that the HIV therapy system (1)
is almost certainly regular and converges to its stable equilibrium point 2
for all       0, and 0 in the indicated ranges, and we advance the
following conjecture:

Conjecture 1 The HIV therapy system (1) converges to its stable equilib-
rium point 2 for all       0 and 0
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Figure 3: Bifurcation diagram of the variables  , and  (with the vari-
ation of the largest Lyapunov exponent ) of system (1) plotted versus
 2 [0 200] for  = 025  = 025  = 10  = 001  = 0006 0 = 1000 0 =
550 (0) = 0 (0) = 0 and (0) = 003

Figure 4: Bifurcation diagram of the variables  , and  (with the variation
of the largest Lyapunov exponent ) of system (1) plotted versus  2 [0 1]
for  = 025  = 50  = 10  = 001  = 0006 0 = 1000 0 = 550 (0) =
0 (0) = 0 and (0) = 003
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Figure 5: Bifurcation diagram of the variables  , and  (with the variation
of the largest Lyapunov exponent ) of system (1) plotted versus  2 [0 01]
for  = 025  = 50  = 025  = 10  = 0006 0 = 1000 0 = 550 (0) =
0 (0) = 0 and (0) = 003

Figure 6: Bifurcation diagram of the variables  , and  (with the variation
of the largest Lyapunov exponent ) of system (1) plotted versus  2 [0 01]
for  = 025  = 50  = 025  = 10  = 001 0 = 1000 0 = 550 (0) =
0 (0) = 0 and (0) = 003
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Figure 7: Bifurcation diagram of the variables  , and  (with the vari-
ation of the largest Lyapunov exponent ) of system (1) plotted versus
0 2 [0 5000] for  = 025  = 50  = 025  = 10  = 001  = 0006 0 =
550 (0) = 0 (0) = 0 and (0) = 003

Figure 8: Bifurcation diagram of the variables  , and  (with the vari-
ation of the largest Lyapunov exponent ) of system (1) plotted versus
0 2 [0 2000] for  = 025  = 50  = 025  = 10  = 001  = 0006 0 =
1000 (0) = 0 (0) = 0 and (0) = 003
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As a result of the previous conjecture, we conclude that the concentration
of the CD4 lymphocyte population converges to the …xed quantity 0+0

(+)
,

the CD8 lymphocyte population converges to 0+0
+

, and the HIV-1 viral

load converges to (0¡0)
0+0

with the condition 0 ¡ 0  0 since it is a

positive quantity. In this case, the system (1) never converges to 1 because
it is always unstable. Thus the system (1) never returns to the normal
unperturbed concentrations of the CD4 and CD8 lymphocyte populations
denoted by 0 and 0.
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