
On some universal dynamics of a 2-D
Hénon-like mapping with an unknown

bounded function

Zeraoulia Elhadj1, J. C. Sprott2
1Department of Mathematics, University of Tébessa, (12002), Algeria.
E-mail: zeraoulia@mail.univ-tebessa.dz and zelhadj12@yahoo.fr.

2 Department of Physics, University of Wisconsin, Madison, WI 53706, USA.
E-mail: sprott@physics.wisc.edu.

October 7, 2010

Abstract
This paper investigates the dynamics of a 2-D Hénon-like mapping

with an unknown bounded function. The values of parameters and the
range of initial conditions for which the dynamics of this equation is
bounded or unbounded are rigorously derived. The results given here
are universal and do not depend on the expression of the nonlinearity
in the considered map.
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1 Introduction

One of the best known 2-D discrete models is the Hénon map [1] given by

H(x, y) =

µ
1− ax2 + by

x

¶
. (1)

There are many works that model the original Hénon map, for example [6-8].
Moreover, it is possible to change the form of the Hénon map to obtain other
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new chaotic attractors with interesting properties [2-3-4-5-7-9]. Applications
include secure communications using the notions of chaos [11-12].
A 2-D Hénon-like mapping with an unknown bounded function has the

following form:

g(x, y) =

µ
1− af(x) + by

x

¶
, (2)

where a and b are the control parameters and f : R −→ R is an unknown
nonlinear bounded function, not necessarily continuous. The map (2) can be
rewritten as a second order nonlinear difference equation given by

xn+1 = 1− af(xn) + bxn−1, (3)

in which, together with some specified values of initial conditions, defines
a sequence (xn)n. Difference equations have a variety of applications as
in computer science and approximations in numerical analysis [13-16-17].
The asymptotic behavior of solutions of a difference equation (3) generally
depends on both the parameter values and the initial conditions. We are
particularly interested in the asymptotic behavior of solutions, that is n −→
+∞. Analyzing equation (3) can be quite difficult. Since f is a nonlinear
function, it may be impossible to solve equation (3) in any simple closed
form. This means that either one is limited to analyzing it using numerical
simulations and generalizing from the limited number of cases that can be
done [13-14-17], or else using the standard analysis methods for dynamical
systems to produce a general picture of what happens in the system.

2 Asymptotic behaviors

The essential motivation of this work is to derive rigorously universal regions
for the control parameters a and b and the initial conditions x0 and x1 (i.e.,
y0 for the map (2)) for which the dynamics of the new map (2) is bounded or
unbounded using its equivalent transformation to the difference equation (3).
Note that the results obtained in this paper speak only to the existence of
bounded and unbounded orbits. To obtain information about the occurrence
of other behaviors such as periodic orbits and chaos, one has to consider the
map (2) with a specific function, which cannot be obtained in the general
form of (2) or (3).
In all proofs given here, we use the following standard results:
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Theorem 1 Let (xn)n and (zn)n be two real sequences. If |xn| ≤ |zn| and
limn−→+∞ |zn| = A < +∞, then limn−→+∞ |xn| ≤ A, or if |zn| ≤ |xn| and
limn−→+∞ |zn| = +∞, then limn−→+∞ |xn| = +∞.

Proof. The proof is available in the standard mathematics books and will
not be given here.
We use this result to construct a sequence (zn)n that satisfies the above

conditions for determining whether the difference equation (3) has bounded
or unbounded orbits.

Theorem 2 Suppose that f is a bounded function over its definition set such
that supx |f (x)| = δ. Then for every n > 1 and all values of a and b, the
sequence (xn)n given in (3) satisfies the following inequality:

|1− xn + bxn−2| ≤ |a| δ. (4)

Proof. We have for every n > 1 that xn = 1− af(xn−1) + bxn−2. Then one
has that

|−xn + 1 + bxn−2| = |af(xn−1)| ≤ |a| δ (5)

since supx |f (x)| = δ.

Theorem 3 For every n > 1, and all values of a and b, and for all values of
the initial conditions (x0, x1) ∈ R2, the sequence (xn)n satisfies the following
equalities:
First, if b 6= 1, then

xn =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
b
n−1
2 −1
b−1 + b

n−1
2 x1 − a

p=n−1
2X

p=1

bp−1f(xn−(2p−1)), if n is odd

b
n
2 −1
b−1 + b

n
2 x0 − a

p=n
2X

p=1

bp−1f(xn−(2p−1)), if n is even.

(6)

Second, if b = 1, then

xn =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
n−1
2
+ x1 − a

p=n−1
2X

p=1

f(xn−(2p−1)), if n is odd

n
2
+ x0 − a

p=n
2X

p=1

f(xn−(2p−1)), if n is even.

(7)
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Proof. We have for every n > 1, the following equalities:

xn = 1− af(xn−1) + bxn−2, (8)

xn−2 = 1− af(xn−3) + bxn−4, (9)

xn−4 = 1− af(xn−5) + bxn−6... (10)

Then the results in (6) and (7) are obtained by successive substitutions of,
for example, (9) and (10)... into (8)..., for all k = n− 2, n− 4, ..., 2.

Theorem 4 The fixed points (l, l) of the map (2) exist if one of the following
conditions holds:
(i) If a 6= 0 and b 6= 1, then l satisfyies the following conditions:(

1− af(l) + (b− 1) l = 0 and l ≤ 1+|a|δ
1−b , if b > 1

1+|a|δ
1−b ≤ l, if b < 1.

(11)

(ii) If b = 1, and a 6= 0, then l is given by f (l) = 1
a
.

(iii) If b 6= 1 and a = 0, then l is given by l = 1
1−b .

(iv) If a = 0 and b = 1, then there are no fixed points for the map (2).

Proof. The proof is direct except for the case (i) where we use Theorem 2,
and therefore, one concludes that all fixed points of the map (2) are confined

to the interval
i
−∞, 1+|a|δ

1−b

i
if b > 1, and to

h
1+|a|δ
1−b ,+∞

h
if b < 1. On the

other hand, case (iii) gives a simple linear second-order difference equation
xn = 1 + bxn−2. This situation is very standard.
Next, we state the main results of the paper as follows:

2.1 Existence of bounded orbits

In this subsection, we determine sufficient conditions for which the map (2)
has bounded solutions. This case is very interesting since almost periodic,
quasi-periodic, and chaotic orbits are bounded. Hence we prove the following
theorem:

Theorem 5 Consider the map (2), and assume that f is a bounded function.
Then for |b| < 1 and all a ∈ R and all initial conditions (x0, x1) ∈ R2, the
orbits of the map (2) are bounded.
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Proof. From equation (2) and the fact that f is a bounded function, one
has the followings inequalities for all n > 1:

|xn| ≤ 1 + |a| δ + |bxn−2| , (12)

|xn−2| ≤ 1 + |a| δ + |bxn−4| , (13)

... |x2| ≤ 1 + |a| δ + |bx0| . (14)

This implies from (12), (13), (14), ... that

|xn| ≤ 1 + |a| δ + |bxn−2| , (15)

|xn| ≤ (1 + |a|) δ + |b| (1 + |a| δ + |bxn−4|) , (16)

|xn| ≤ (1 + |a| δ) + (1 + |a| δ) |b|+ |b|2 |xn−4| , ... (17)

Hence from (13) and (17) one has

|xn| ≤ (1 + |a| δ) + (1 + |a| δ) |b|+ |b|2 (1 + |a| δ) + |b|3 |xn−6| , ... (18)

Since |b| < 1, then the use of (18) and the induction about some integer k
and the use of the sum of a geometric growth formula leads to the following
inequality for every n > 1 :

|xn| ≤ (1 + |a| δ)
Ã
1− |b|k

1− |b|

!
+ |b|k |xn−2k| , (19)

where k is the largest integer j such that j ≤ n
2
. Thus one has the following

two cases:
(1) If n is odd, i.e., ∃m ∈ N such that n = 2m+1, then the largest integer

k ≤ n
2
is k = n−1

2
, for which (xn)n satisfies the following inequality:

|x2m+1| ≤ (1 + |a| δ)
µ
1− |b|m

1− |b|

¶
+ |b|m |x1| = zm. (20)

(2) If n is even, i.e., ∃m ∈ N such that n = 2m, then the largest integer
k ≤ n

2
is k = n

2
, for which xn satisfies the following inequality:

|x2m| ≤ (1 + |a| δ)
µ
1− |b|m

1− |b|

¶
+ |b|m |x0| = um. (21)
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Thus, since |b| < 1, then the sequences (zm)m and (um)m are bounded, i.e.,⎧⎨⎩ zm ≤ (1+|a|δ)
1−|b| +

¯̄̄
|x1|− (1+|a|δ)

1−|b|

¯̄̄
, for all m ∈ N

um ≤ (1+|a|δ)
1−|b| +

¯̄̄
|x0|− (1+|a|δ)

1−|b|

¯̄̄
, for all m ∈ N.

(22)

Thus equations (20) and (21) and inequalities (22) give the following bounds
for the sequence (xn)n:

|xn| ≤ max
µ
(1 + |a| δ)
1− |b| +

¯̄̄̄
|x0|−

(1 + |a| δ)
1− |b|

¯̄̄̄
,
(1 + |a| δ)
1− |b| +

¯̄̄̄
|x1|−

(1 + |a| δ)
1− |b|

¯̄̄̄¶
.

(23)
Finally, for all values of a and for values of b satisfying |b| < 1 and for all
values of the initial conditions (x0, x1) ∈ R2, one has that all orbits of the
map (2) are bounded, i.e., in the subregion of R4 :

Ω1 =
©
(a, b, x0, x1) ∈ R4/ |b| < 1

ª
. (24)

Hence the proof is completed.

2.2 Existence of unbounded orbits

In this subsection, we determine sufficient conditions for which the orbits of
the map (2) are unbounded. Hence we prove the following theorem:

Theorem 6 Consider the map (2), and assume that f is a bounded function.
Then the map (2) possesses unbounded orbits in the following subregions of
R4 :

Ω2 =

½
(a, b, x0, x1) ∈ R4/ |b| > 1, and both |x0| , |x1| >

|a| δ + 1
|b|− 1

¾
(25)

and

Ω3 =

½
(a, b, x0, x1) ∈ R4/ |b| = 1, and |a| <

1

δ

¾
. (26)
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Proof. (a) For every n > 1, we have xn = 1 − af(xn−1) + bxn−2. Then,
|bxn−2 − af(xn−1)| = |xn − 1| and ||bxn−2|− |af(xn−1)|| ≤ |xn − 1|. (We use
the inequality |x|− |y| ≤ ||x|− |y|| ≤ |x− y|.) This implies that

|bxn−2|− |af(xn−1)| ≤ |xn|+ 1. (27)

Since |f(xn−1)| ≤ |δ|, this implies that − |af(xn−1)| ≥ − |a| δ and |bxn−2| −
|af(xn−1)| ≥ |bxn−2|− |a| δ. Finally, one has from (27) that

|bxn−2|− (|a| δ + 1) ≤ |xn| . (28)

Then by induction as in the previous section, one has

|xn| ≥

⎧⎪⎪⎨⎪⎪⎩
³
−(|a|δ+1)
|b|−1 + |x1|

´
|b|

n−1
2 + |a|δ+1

|b|−1 , if n is odd,³
−(|a|δ+1)
|b|−1 + |x0|

´
|b|

n
2 + |a|δ+1

|b|−1 , if n is even.

(29)

Thus, if |b| > 1 and both |x0|, |x1| > |a|δ+1
|b|−1 ), then one has limn−→+∞ |xn| =

+∞.
(b) For b = 1, one has

|xn| ≥

⎧⎨⎩ (1− |a| δ)
¡
n−1
2

¢
+ x1, if n is odd,

(1− |a| δ)
¡
n
2

¢
+ x0, if n is even.

(30)

Hence, if |a| < 1
δ
, then one has limn−→+∞ xn = +∞.

For b = −1, one has from Theorem 3 the following inequalities:

xn ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
¡
n−1
2

¢
+ x1 +

¯̄̄̄
¯̄p=

n−1
2X

p=1

a (−1)p−1 f(xn−(2p−1))

¯̄̄̄
¯̄ , if n is odd,

−
¡
n
2

¢
+ x0 +

¯̄̄̄
¯̄p=

n
2X

p=1

a (−1)p−1 f(xn−(2p−1))

¯̄̄̄
¯̄ , if n is even.

(31)

Since
¯̄
a (−1)p−1 f(xn−(2p−1))

¯̄
≤ |a| δ, then one has the following:

xn ≤

⎧⎨⎩ (|a| δ − 1)
¡
n−1
2

¢
+ x1, if n is odd,

(|a| δ − 1)
¡
n
2

¢
+ x0, if n is even.

(32)
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Thus, if |a| < 1
δ
, then one has limn−→+∞ xn = −∞.

Note that there is no similar proof for the following subregions of R4 :

Ω4 =

½
(a, b, x0, x1) ∈ R4 / |b| > 1, and both |x0| , |x1| ≤

|a| δ + 1
|b|− 1

¾
, (33)

Ω5 =

½
(a, b, x0, x1) ∈ R4 / |b| = 1, and |a| ≥

1

δ

¾
. (34)

Hence the proof is completed.
It can be seen from the above results that a Hénon-like map of the form

(2) with any bounded function may exhibit with respect to the parameter b
the following dynamics:
(i) If |b| < 1, then the map (2) is bounded (see Theorem 5).
(ii) If |b| ≥ 1, then the map (2) is unbounded (see Theorem 6).

3 Some examples

3.1 f (x) = sin (x)

In this subsection, we give an elementary example of the above situation,
where we choose the function f(x) = sin(x). Hence we show numerically
that the map (2) with a sine function is capable of generating multi-fold
strange attractors as shown in Fig. 2 [2] obtained by a period-doubling route
to chaos as shown in Fig. 1. In this case, we have δ = 1, and if we set
a = 4 and |b| < 1, then one can see that the orbits of the map (2) with a
sine function are all bounded as shown in Fig. 1, i.e., there is a bounded
stable fixed point, as well as periodic and chaotic orbits. New in this example
is that we obtain multi-fold strange attractors by a C∞-modification of the
Hénon map as shown in [18]. This effect in some ways simplifies the study
of such maps and avoids some problems related to the lack of continuity in
the derivative of the map as in [2]. As a suggested application, the picture
of a chaotic model is structured around a constituted skeleton of unstable
periodic orbits that are together dense in the attractor, as well as the passing
in-transit orbits between them, which form the chaotic attractor. The ideas
for using chaos in the security of multi-user communications [11] are often
based on the control and use of the unstable periodic orbits, the main idea
being that they act as the skeleton of the chaotic attractor and provide a
reservoir of secure communication channels. In this way, a number of users
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Figure 1: Bifurcation diagram of the map (2) with a sine function obtained
for −1 < b < 1 and a = 4.

can each be provided a clean code in the same channel. Therefore, the
interest in multi-fold attractors resides in the possibility that they permit
one to generate shorter orbits and thus a faster transmission of the messages,
as well as better security in the communications. Furthermore, the same
phenomena are observed for the function f (x) = cos (x) .

3.2 f (x) = sgn (x)

In this subsection, we choose the function f(x) = sgn(x), where sgn(.) is
the standard signum function that gives ±1 depending on the sign of its
argument. Hence we show numerically that the map (2) with the signum
function converges to a period-2 orbit for all |b| < 1 and a = 4 as shown in
Fig. 3.

4 Conclusion

We have reported some universal results relevant to the dynamics of a 2-D
Hénon-like mapping with an unknown bounded function. Sufficient condi-
tions for which this map is bounded or unbounded are rigorously derived.
Elementary examples are also given and discussed.
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Figure 2: Different multi-fold chaotic attractors (with their bassins of at-
traction in white) obtained from map (2) with a sine function, observed for
the initial condition (x0, y0) = (0.01, 0.01) and (a) a = −3.5 b = 0.5. (b)
a = 3.5, b = 0.5.

10



Figure 3: Bifurcation diagram of the map (2) with a signum function obtained
for −1 < b < 1 and a = 4.
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