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Abstract

In this letter, we find upper and lower bounds for the Lorenz–

Stenflo system. In particular, we find large regions in the bifurcation

parameter space where this system is bounded.
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1 Introduction

Bounded chaotic attractors and the estimate of their bounds is important
in chaos control, chaos synchronization, and their applications [Chen, 1999].
Such an estimation is quite difficult to achieve technically, however. Several
works on this topic were realized for some 3-D quadratic continuous-time
systems [Leonov et al., 1987; Pogromsky et al., 2003; Li et al., 2005; Zeraoulia
& Sprott, 2010; and references therein]. In this letter, we find upper and lower
bounds for the Lorenz–Stenflo system [Stenflo, 1996] given by















x′ = −σ (x− y) + sw

y′ = −xz + rx− y

z′ = xy − bz

w′ = −x− σw

(1)
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These bounds are obtained based on multivariable function analysis con-
cerned with locating max ima and minima. In particular, we find large re-
gions in the bifurcation parameter space (σ, r, b, s) ∈ R

4 where system (1)
is bounded. The Lorenz–Stenflo system (1) describes finite-amplitude, low-
frequency, short-wavelength, acoustic gravity waves in a rotational system
[Stenflo, 1996]. Several results about the dynamics of system (1) have been
reported in [Y u & Y ang, 1996; Y u et al., 1996; Zhou et al., 1997; Y u, 1999;
Banerjee et al., 2001]. In a recent paper [X avier & R ech, 2010], the precise
locations for pitchfork and H opf bifurcations of fix ed points were determined
along with a numerical characterization of periodic and chaotic attractors.

2 E stim a ting th e b ounds for th e L orenz – S tenfl o

sy ste m

To estimate the bound for the Lorenz–Stenflo system (1), we consider the

Lyapunov function V (x, y, z, w) defined by V (x, y, z, w) =
1
s
x2+y2+(z−(r+σ

s
))

2
+w2

2
.

The derivative of V along the solutions of (1) is given by d V
d t

= −σ
s
x2 −

y2 − b
(

z − σ+rs
2s

)2
− σw2 +

b(r+σ

s
)
2

4
. Let H (x, y, z, w) = x2

b(σ+rs)2

4σs

+ y2

b(r+ σ
s )

2

4

+

(z−σ+rs

2s
)
2

(σ+rs)2

4s2

+ w2

b(σ+rs)2

4σs2

− 1. Thus to prove the boundedness of system (1), we as-

sume that it is bounded, and then we find its bound, i.e., assume that σ, s, and
b are strictly positive and r ≥ 0. Then if system (1) is bounded, the function
d V
d t

(x, y, z, w) has a max imum value, and the max imum point (x0, y0, z0, w0)
satisfies H (x0, y0, z0, w0) = 0. N ow consider the 4-D ellipsoid defined by
Γ = {(x, y, z, w) ∈ R

4 : H (x, y, z, w) = 0, σ > 0, s > 0, b > 0, r ≥ 0}, and de-
fine the function F (x, y, z, w) = G (x, y, z, w)+λH (x, y, z, w), where G (x, y, z, w) =
x2+y2+z2+w2 and λ ∈ R is a finite parameter. We have max (x,y,z,w)∈Γ G =

max (x,y,z,w)∈Γ V and ∂ F
∂ x

=
2(br2s2+2brsσ+4λsσ+bσ2)

b(σ+rs)2
x, ∂ F

∂ y
=

2(br2s2+2brsσ+4λs2+bσ2)
b(σ+rs)2

y, ∂ F
∂ z

=
2(r2s2+2rsσ+4λs2+σ2)

(σ+rs)2
z−

2(2rλs2+2σλs)
(σ+rs)2

, and ∂ F
∂ w

=
2(br2s2+2brsσ+4λs2σ+bσ2)

b(σ+rs)2

w. In this case, the H essian matrix of the function F is diagonal with the ele-

ments (eigenvalues)
2(br2s2+2brsσ+4λsσ+bσ2)

b(σ+rs)2
,
2(br2s2+2brsσ+4λs2+bσ2)

b(σ+rs)2
,
2(r2s2+2rsσ+4λs2+σ2)

(σ+rs)2
,

and
2(br2s2+2brsσ+4λs2σ+bσ2)

b(σ+rs)2
. Thus the scalar function F has a max imum point

if all eigenvalues of the corresponding H essian matrix are strictly negative,
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that is, λ < min
(

−b(σ+rs)2

4sσ
,
−b(σ+rs)2

4s2 ,
−(σ+rs)2

4s2 ,
−b(σ+rs)2

4s2σ

)

. If s ≥ 1, 0 < σ ≤ s,

and 0 < σ < bs, we have −b(σ+rs)2

4sσ
−

(

−b(σ+rs)2

4s2

)

= −b(s−σ)(σ+rs)2

4s2σ
≤ 0,

−b(σ+rs)2

4sσ
−

(

−(σ+rs)2

4s2

)

= −(σ+rs)2(−σ+bs)
4s2σ

≤ 0, and −b(σ+rs)2

4sσ
−

(

−b(σ+rs)2

4s2σ

)

=

−b(s−1)(σ+rs)2

4s2σ
≤ 0. Thus λ <

−b(σ+rs)2

4sσ
. Then the only critical point of F is

x0 = 0, y0 = 0, z0 = 2s(σ+rs)λ
σ2+4s2λ+r2s2+2rsσ

, and w0 = 0, and hence max (x,y,z,w)∈Γ G =
(

2sσλ+2rs2λ
σ2+4s2λ+r2s2+2rsσ

)2

= f (λ) . In this case, there ex ists a parameterized fam-

ily (in λ) of bounds of system (1). We remark that for diff erent values of
λ, one can get diff erent estimates for system (1). Some calculations lead to

f ′ (λ) = (σ+rs)48s2λ

(r2s2+2rsσ+4λs2+σ2)3
. We have r2s2+2rsσ+4λs2+σ2 < 0 for all −∞ <

λ <
−b(σ+rs)2

4sσ
, and hence f ′ (λ) > 0, which means that f (λ) is an increasing

function, that is, limλ→ −∞

(

2sσλ+2rs2λ
σ2+4s2λ+r2s2+2rsσ

)2

= Q2 =
(2rs2+2σs)

2

16 s4 < f (λ) <

1
4
b2

(σ+rs)2

(−σ+bs)2
= R2. F inally, we have max (x,y,z,w)∈Γ (x2 + y2 + z2 + w2) <

b2(σ+rs)2

4(−σ+bs)2
=

R2, which is the upper bound for the Lorenz–Stenflo system (1). F or the other
values of (σ, r, b, s) ∈ R

4, the same logic applies.
F inally, we have proved the following result:

T h eore m 1 T h e L oren z– S ten fl o system (1 ) is con tain ed in part of th e 4 -D

ellip soid defi n ed by Ω =

{

(x, y, z, w) ∈ R
4 : Q2 <

1
s
x2+y2+(z−(r+σ

s
))

2
+w2

2
≤ R2

}

for all r ≥ 0, b > 0, s ≥ 1, 0 < σ ≤ s, σ < bs, an d all in itial con dition s, wh ere

Q2 =
(2rs2+2σs)

2

16 s4 an d R2 = b2(σ+rs)2

4(bs−σ)2
.

We remark that if σ → bs, then the upper bound converges to infin-

ity. The volume of the resulting set in R
4 is 1

4
b2

(σ+rs)2

(−σ+bs)2
−

(

(2rs2+2σs)
2

16 s4

)

=

σ(σ+rs)2(2bs−σ)

4s2(bs−σ)2
> 0 since bs > σ.

3 C onclusion

Using multivariable function analysis, we find upper and lower bounds for the
Lorenz–Stenflo system. In particular, we find large regions in the bifurcation
parameter space where this system is bounded.
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