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Abstract 
 A search for chaos in partial differential equations concludes that the Kuramoto-
Sivashinsky equation is likely the simplest one that permits chaos. All of the possible 
equations with one quadratic nonlinearity and no explicit time dependence that are 
“simpler” than the Kuramoto-Sivashinsky equation are tested, but none show signs of 
chaos. As the simplest chaotic partial differential equation, the Kuramoto-Sivashinsky 
equation bears insight into what essential elements are needed for chaos. 
 
I. Introduction 
 

What causes chaos in partial differential equations? One way to answer this 
question is to determine the minimum requirements for chaos to occur. By eliminating 
superfluous elements while still retaining the chaotic behavior, the elements that remain 
will be the ones essential for chaos. Thus more than mere aesthetics motivate the search 
for the simplest chaotic equations, for these uniquely simple equations can reveal insight 
into the causes of chaos. 

While a search for the simplest chaotic ordinary differential equation has 
previously been done (6), such an endeavor has not been done for partial differential 
equations (PDE’s), an area not well studied in general.  Before embarking on this project, 
one relatively simple partial differential equation was known to be chaotic1: 
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where u(x,t) is a scalar function and R is a real number. This PDE, known as the 
Kuramoto-Sivashinsky equation (1, 4, 5), was known to be chaotic for R = 2  (see Fig. 1). 

                                                 
1 Saying an equation is chaotic is shorthand for saying there exist coefficients such that 
the solution to the equation is chaotic. 



 
Figure 1. Chaotic behavior is apparent in this three-dimensional plot of the Kuramoto-
Sivashinsky equation, solved here with R = 2, periodic boundary conditions, and one 

complete sine wave for the initial condition (i.e., u(x,0) = sin(
2π
19

x) , and the size of the 

system is 19). Space is displayed horizontally, time into the page ( 7000 ≤ t ≤ 8000 ), and 
the state values vertically. 

 
 We decided to search in the space of equations that have the same form as the 
Kuramoto-Sivashinsky equation. Specifically, we considered partial differential 
equations with periodic boundary conditions that have the form 

 
∂u(x, t)

∂t
= F(u(x,t)) , (1.2) 

where F(u(x,t)) can consist of derivatives in space but not in time, can contain a constant 
term, and must contain exactly one quadratic nonlinearity (e.g., u2 or u ⋅ ∂3u / ∂x3  etc.). 
(In the future this search could be extended to other nonlinearities such as cubic ones, but 
for the sake of simplicity and time this paper considers only quadratic nonlinearities.) 
 

The goal was to find equations that are somehow “simpler” than the Kuramoto-
Sivashinsky equation yet still chaotic. But first, how does one define the “simplicity” of 
an equation? Since there is no universal, accepted definition, we created our own, which 
works as follows: 

• Arrange the ∂u / ∂t term on the left-hand side of the equation and all the other 
terms on the right-hand side; 

• Sum the number of terms, the values of the powers (only those ≥ 2 ), and 
degrees of the derivatives (only those ≥ 1) on the right-hand side; 

• The sum of those three quantities is the “complexity” of the equation. 



The term u ⋅ ∂3u / ∂x3 , for example, would add 4 to the complexity (1 for being a term, 3 
for the third derivative), while u2 ⋅ ∂3u / ∂x3  (which happens to be a cubic nonlinearity) 
would add 6 to the complexity (1 for being a term, 3 for the third derivative, 2 for the 
power of 2 on u ). The Kuramoto-Sivashinsky equation has three terms, one first 
derivative, one second derivative, and one fourth derivative, so it has a complexity of 
3 + 1+ 2 + 4 = 10 . 
 
 Enumerating all of the equations of the form in Equation (1.2) that have a 
complexity strictly less than 10 (the complexity of the Kuramoto-Sivashinsky equation) 
yields a total of 210 equations. After deciding to consider only linearly dissipative 
equations, or equations that have a friction-like element that slowly removes energy from 
the system (a term such as –u , +uxx , –uxxxx , +uxxxxxx , etc.),2 this number is reduced to 195 
equations. 
 
II. The Search Method 
 

The standard test for chaos is the largest Lyapunov exponent (3), which measures 
the average exponential rate at which nearby initial conditions spread apart. If this 
Lyapunov exponent is positive, then small perturbations grow exponentially, 
predictability is lost, and the system is chaotic. By calculating the largest Lyapunov 
exponent of the Kuramoto-Sivashinsky equation for many values of R , we concluded 
that the PDE is most chaoic for R  near 1.2 (see Fig. 2) The procedure used to numerically 
calculate the largest Lyapunov exponent was similar to the one outlined in (7, p. 116-117) 
with a perturbation of ∆ R = 10–6 . 
 

However, since this procedure was written for finite systems, it had to be 
modified slightly for partial differential equations, which are infinite systems. To 
calculate the Lyapunov exponent, one repeatedly perturbs the system and computes the 
difference between the perturbed and unperturbed trajectories. These operations are 
straightforward for finite systems such as maps, flows and ordinary differential equations 
because the state variables live in Rk. The states of these partial differential equations, 
however, are one-dimensional functions u(x,t) , with t  fixed and x  varying from 0 to the 
size of the system. Since we know how to calculate the Lyapunov exponent when the 
state variable is a number or vector, we convert these state functions u(x,t)  into vectors 
by collecting the values at each whole number position in space, and then we proceed to 
use the finite procedure for calculating the Lyapunov exponent. 
 
 

 

                                                 
2 Here we use the shorthand uxx = ∂2u / ∂x2 , etc. 



 
Figure 2. Plot of the largest Lyapunov exponent of the Kuramoto-Sivashinsky equation 
versus the parameter R . (Positive LLE indicates a chaotic solution. The greater the LLE, 
the more chaotic the solution is.) For R < 1.2  the numerical method becomes unstable. 

 
The partial differential equations were solved using the built-in numerical 

differential equation solver in Mathematica, which uses the method of lines (2). Each 
equation was evaluated in the spatial direction from x = 0 to x = L , where L  is a fixed 
prime number, with periodic boundary conditions and in the temporal direction out to 
absolute time t = 8000 . This amount of time is long enough for convergent equations to 
sufficiently approach a fixed point and divergent equations to sufficiently approach 
infinity so that they may be easily discarded (for they are not chaotic), but short enough 
to make the computation fast. The calculation of the Lyapunov exponent ignored the first 
7000 time units so that the system could reach its attractor, its end-state structure, rather 
than approaching it, which could give spurious results (transient chaos). 

 
The search for chaotic equations among the 195 candidate equations works as 

follows. As it turns out, each equation has 2, 3, 4 or 5 terms. Each of those terms is 
multiplied by a coefficient, which could be any real number. However, with a suitable 
rescaling of the variables u and t, two of these coefficients can be replaced by ±1, a trick 
that significantly reduces the number of possible coefficients. Hence, for the equations 
that have just two terms, the two coefficients are both ±1. For the equations with three 
terms, the first two coefficients are both ±1 and the third can be any real number; this 



third coefficient is like a “knob” that we turn. For the equations with four terms, two 
coefficients are ±1 and two are “knobs.” For the sole equation with five terms (there are 
not more because all others have complexity greater than 10), two coefficients are ±1 and 
three are “knobs.” 

 
The question becomes: what values do you try for the “knobs” – that is, the 

coefficients that can be any real number? The coefficients should be within a few orders 
of magnitude of each other; if not, then some terms will dominate others. Hence we chose 
to have each coefficient randomly sample hundreds of values in a uniform logarithmic 
distribution from 10-3 to 102. (For each coefficient we also tried its negative.) 

  
The initial condition u(x,0)  can be varied, as well, for one does not have to 

always use a sine wave as in Figure 1. In theory, if an equation is chaotic and dissipative, 
there exists a “basin of attraction,” or region of initial conditions such that the equation is 
chaotic if and only if the initial condition is in the basin of attraction. Therefore, if one of 
the 195 candidate equations is chaotic, the computer search must sample that equation 
using an initial condition in its basin of attraction. One form of initial conditions we 
tried, for example, was 

u(x,0) = sin(
2π
LP

x) + V , 

where L  is the spatial length (we tried all primes between 2 and 29), P is the period (we 
tried 11 roughly evenly spaced values between 0.2 and 10), and V  is the vertical offset 
(we tried 7 roughly evenly spaced values between -1 and 1). 

  
III. Results 

 
We ran this search on a 2 GHz dual core CPU for 10 months and tested more than 

108 equations, yet we found no chaotic solutions. To check that the search successfully 
detects chaos, we tested the Kuramoto-Sivashinsky equation (1.1) with spatial length 
L = 19 , and 80 chaotic solutions were found. This strongly suggests that the computer 
search works, so it is likely that none of the 195 candidate equations are chaotic. Given 
that thousands of coefficients and initial conditions were tried for each equation (the 
number varies because the equations have different numbers of “knobs”), it is unlikely 
that the computer search missed a chaotic equation. 
 
IV. Conclusion 
 

The results of this computer search strongly suggest that the Kuramoto-
Sivashinsky equation is the simplest chaotic PDE that contains a single quadratic 
nonlinearity. Therefore each term in the Kuramoto-Sivashinsky equation might indicate 
what at bare minimum is needed for chaos: 

“The ∂2u / ∂x2  term is a negative viscosity leading to the growth of long 
wavelength modes, and the ∂4u / ∂x4 term is a hyperviscosity that damps the short 
wavelength modes. The nonlinearity u∂u / ∂x transports energy from the growing 
modes to the damped modes.” (7, p. 409) 



Since removing terms, reducing the powers, or reducing the derivatives of the Kuramoto-
Sivashinsky equation eliminates the chaos, as found in the computer search, these three 
terms are somehow essential to chaos. 
 
 Directions for further study of this topic include expanding the search to equations 
containing cubic nonlinearities. There are 208 equations that have a cubic nonlinearity 
and a complexity less than that of the Kuramoto-Sivashinsky equation. This search may 
find better success since quadratic nonlinearities tend to push the system in one direction 
leading to divergence, whereas cubic nonlinearities can draw the system back toward 
equilibrium, allowing the system to be locally unstable but globally stable as required for 
chaos. 
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