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1.1.   Introduction

The Lotka-Volterra equations represent a simple nonlinear model for the dynamic
interaction between two biological species in which one species (the predator)
benefits at the expense of the other (the prey). With a change in signs, the same model
can apply to two species that compete for resources or that symbiotically interact.
However, the model is not structurally stable, since persistent time-dependent
(oscillatory) solutions occur for only a single value of the parameters.

This paper considers structurally stable variants of the Lotka-Volterra equations
with arbitrarily many species solved on a homogeneous two-dimensional grid with
coupling between neighboring cells. Interesting, biologically-realistic, spatio-temporal
patterns are produced. These patterns emerge from random initial conditions and thus
exhibit self-organization. The extent to which the patterns are self-organized critical
(spatial and temporal scale-invariant) and chaotic (positive Lyapunov exponent) will
be examined.

The same equations, without the spatial interactions, can be used to model
romantic relationships between individuals. Different romantic styles lead to different
dynamics and ultimate fates. Love affairs involving more than two individuals can
lead to chaos. Strange attractors resulting from such examples will be shown.

1.2.   Lotka-Volterra Equations

One variant of the Lotka-Volterra equations (Murray 1993) for two species (such as
rabbits and foxes) is



Predator-Prey Dynamics for Rabbits, Trees, and Romance2

)1(/

)1(/

22

11

RaFFrdtdF

FaRRrdtdR

−−=
−−=

(1)

where R is the number of rabbits and F is the number of foxes, both positive and each
normalized to its respective carrying capacity (the maximum allowed in the absence
of the other), r1 and r2 are the respective growth rates in the absence of competition,
and a1 and a2 determine the interspecies competition. In a predator-prey model, the
predator (foxes) would have r2 < 0 and the other constants would be positive.
However, the same equations with all positive constants could model competition, or
with both growth rates negative could model cooperation or symbiosis (chickens and
eggs, plants and seeds, bees and flowers, etc.).

1.3.   Equilibrium and Stability

The system in Eq. (1) has four equilibria, one with no rabbits, one with no foxes, one
with neither, and a coexisting one with

21

2

21

1

1

1

1

1

aa

a
F

aa

a
R

−
−

=

−
−

=
(2)

which is of primary interest.
For the predator-prey case (a1r1 > 0, a1r2 < 0), the coexisting equilibrium is a

stable focus for r1(1 - a1) < -r2(1 - a2), at which point it undergoes a Hopf bifurcation,
after which the trajectory spirals outward without bound from the unstable focus.
Hence there are no structurally stable oscillatory solutions. For the competition case
(a1r1 > 0, a1r2 > 0), the coexisting equilibrium is a stable node for a1 < 1 and a2 < 1, at
which point it undergoes a saddle-node bifurcation, after which one of the species
dies while the other goes to its carrying capacity (R = 1 or F = 1). Thus there are no
oscillatory solutions, and stability requires that the intraspecies competition
dominates. When the interspecies competition dominates, the weaker species is
extinguished by the principle of `competitive exclusion’ or `survival of the fittest’
(Gause 1971). For the cooperation case (a1r1 < 0, a1r2 < 0), both species either die or
grow without bound.

With N species there are 2N equilibria, only one of which represents coexistence,
and it is unlikely that this equilibrium is stable since all of its eigenvalues must have
have only negative real parts. Ecological systems exhibit diversity presumably
because there are so many species from which to choose, because they are able to
spread out over the landscape to minimize competition, and because species evolve to
fill stable niches (Chesson 2000).. If many arbitrary species are introduced into a
highly interacting environment, most would probably die.
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1.4.   Spatio-temporal Generalization

Now assume there are N species with population Si for i = 1 to N and that they are
spread out over a two-dimensional landscape Si(x,y). The species could be plants or
animals or both. For convenience, take the landscape to be a square of size L with
periodic boundary conditions, so that Si(L,y) = Si(0,y) and Si(x,L) = Si(x,0). One
commonly assumes that each species obeys a reaction-diffusion equation of the form
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This system is usually solved on a finite spatial grid of cells each of size d so that
∇2Si(x,y) = [Si(x+d,y) + Si(x-d,y) + Si(x,y+d) + Si(x,y-d) – 4Si(x,y)] / d2.

Diffusion is perhaps not the best model for biology, however, and if too large, it
tends to produce spatially homogneity. Instead, assume that each species interacts not
just with the other species in its own cell but also in the four nearest-neighbor cells (a
von Neumann neighborhood), giving

∑
≠=

−−=
∂

∂ N

ijj
jijiii

i SaSSr
t

S

,1

)1( (4)

where ),( yxS j  = Sj(x+d,y) + Sj(x-d,y) + Sj(x,y+d) + Sj(x,y-d) + αjSj(x,y) is a weighted

average of the neighborhood. In the example of rabbits and foxes, you can think of αj

as the tendency for the foxes to eat at home. With αj = 0, the foxes always eat out, and
with αj = 1 they forage uniformly over a five-cell neighborhood. In the case of trees
and seeds, this term is where one would include a seed dispersion kernel. The
example that follows uses αj = 1 for all j, but the results are not sensitive to the
choice. Including only nearest neighbor cells normalizes space so that the cell size d is
the order of the mean dispersal (or foraging) distance. Note that time can also be
normalized to one of the growth times, so that we can take r1 = 1 without loss of
generality.

1.5.   Numerical Example

In Eq. (4) all the biology is contained in the vector ri, the interaction matrix aij, and
the dispersal vector αj here taken as unitary. Instead of modeling realistic biology, we
choose the values of ri and aij from an IID random normal distribution with zero mean
and unit variance and examine many instances of the model to explore a range of
possible ecologies.

For brevity, Fig. 1 illustrates most of the common behaviors. It starts with six
species with uniform random values Si(x,y) in the range of 0 to 0.2 on a 100 × 100
grid. The upper plots show the spatial structure of the six species after 100 growth
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times, and the lower plot shows the cumulative relative abundance of each species
versus time. One species (the fourth) dies out. The first, second, and sixth, nearly die,
and then recover, after which the five species coexist with aperiodic temporal
fluctuations and spatial heterogeneity.

Figure 1.  Typical example of a spatio-temporal solution Eq. (4) with six initial
species, one of which died.

Figure 2 shows the dominant species in each cell after 100 growth times, each in a
different color. This display facilitates comparison with real data and with the results
of cellular automata models (Sprott 2002). As in earlier studies, we define the cluster
probability as the fraction of cells that are the same as their four nearest neighbors and
Fourier analyze the temporal fluctuations in cluster probability to obtain its power
spectrum. The result in Fig. 3 shows a power law over about a decade and a half,
implying temporal scale invariance as suggestive of self-organized criticality (Bak
1996). Other quantities such as the total biomass ΣSi(t) also have power-law spectra.
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Figure 2.  Landsccape pattern showing the dominant species in each cell.

Figure 3.  Power spectrum of fluctuations in cluster probability.
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To assess whether the dynamics are chaotic, we follow Lorenz (1963) and round
the values of Si(x,y) to four significant digits after the initial transient has decayed and
calculate the growth of the error in the total biomass as the perturbed and unpertubed
systems evolve deterministically. The result in Fig. 4 suggests an exponential growth
in the error with a growth rate the order of 0.1r1. If the system modeled a forest with a
typical r1 of 50 years, the predictability time would be about 500 years. Five species
appears to be the minimum number for such chaotic solutions. With four species,
limit cycles were found, and with three or fewer species, all stable solutions appear to
attract to a time-independent equilibrium with no spatial structure. Spatial
heterogeneity always correlates with temporal fluctuations.

Figure 4.  Exponential growth in total biomass error suggesting chaos.

Note that the chaos and spatial structure arise from a purely deterministic model in
which the only randomness is in the initial condition.  In fact, similar structures arise
from highly ordered initial conditions with noise as small as 10-6. The model is purely
endogenous (no external effects), purely homogeneous (every cell is equivalent), and
purely egalitarian (all species obey the same equation, with only different
coefficients). The spatial patterns and fluctuations are inherent in the equations whose
solutions spontaneously break the imposed symmetry.

1.6. Application to Romantic Relationships

To stress the generality of the model, we can apply it to romantic relationships.
Imagine two lovers, Romeo and Juliet, characterized by a pair of equations such as
Eq. (1) in which R is Romeo’s love for Juliet and F is Juliet’s love for Romeo, both
positive. Each lover can be characterized by one of four romantic styles depending on
the signs of r and a as shown in Table I using names adapted from Strogatz (1988).
The variable r determines whether one’s love grows or dies in the absence of a
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response from the other (a = 0), and the variable a determines whether reciprocated
love enhances or suppresses one’s feelings.

Table I.  Romantic styles
                a

– +
Cautious

lover

+ +
Narcissicist

nerd

–  –
Hermit

                   r
+ –

Eager
beaver

With two interacting lovers, there are thus 24 = 16 different combinations of
romantic styles, the fate of which are determined by the strength of the interations. As
an example, choosing r and a from an IID random normal distribution with zero mean
and unit variance gives the results in Table II, where the percentages are the
probability that a stable steady state is reached. In some sense, the best pairing is
between an eager beaver and a narcissistic nerd, although two eager beavers have
solutions that grow mutually without bound. Not surprisingly, the prospects are
dismal for a hermit and not much better for a cautious lover. Fortunately, humans
seem capable of adapting their romantic styles to fit the situation.

Table II.  Probability of mutual stable love for various pairings.
Narcissistic

nerd
Eager
beaver

Cautious
lover

Hermit

Narcissistic nerd 46% 67% 5% 0%

Eager beaver 67% 39% 0% 0%

Cautious lover 5% 0% 0% 0%

Hermit 0% 0% 0% 0%

It is also instructive to examine love triangles, in which case there are are four
variables if two of the lovers are unaware of one another, and six variables if each
person has feelings for the other two. The variables need not be romatic love ; the
third person could be the child of a couple or perhaps a mother-in-law. With six
variables, there are 26 = 64 equilibria, only one of which represents a universally
happy arrangement and 46 = 4096 different combinations of styles, assuming each
person can adopt a different interaction style toward each of the others. Not
surprisingly, the prognosis for coexisting positive feelings is very low unless the
individuals exhibit strong adaptability of their styles. Perhaps humans adapt to such
situtions much the way plants and animals do, by limiting their interactions, evolving
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to fill a stable niche, drawing sustinence from others, and maintaining spatial
separation.

With three or more variables, there is the possibility of chaotic solutions.
However, a search for such solutions in the system of Eq. (1) generalized to six
variables failed to reveal any such solutions, although other similar models do exhibit
chaos (see for example http://sprott.physics.wisc.edu/lectures/love&hap/).
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