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The Substorm Problem

• The solar wind driven magnetosphere-ionosphere is a driven-
damped complex dynamical system.

• There is a great variety of observational waveforms in the sub-
storm databases suggesting that the appropriate behavior is
one of a chaotic system.

• There is global spatial coherence as emphasized by Baker et
al. (1999) in the correlated measurements from

(1) the ground-based auroral latitude chain of magne-
tometers whose wave forms are used to give the classic def-
inition of a substorm event by the AL index.

(2) the satellite measurements of particle distributions
δfa(x, v, t) and electromagnetic fields δE, δB in the geotail
plasma that contains the large cross-tail current I(t) flow pro-
viding the confinement of the high plasma pressure p(t). The
pressure balance is 〈p〉 = B2

x/2µ0 = 1
2 µ0 (I(t)/Lx)

2.



The WINDMI Substorm Model

Here we investigate two questions concerning the WINDMI de-
scription of the substorm dynamics.

Q1: Can the full d = 6 energy component system be reduced to the
minimal order d = 3 system of a deterministic chaotic system
while retaining the three regimes of quiet time, quasi-periodic
substorms and chaotic dynamics?

• In making the reduction to d = 3 the faster evolving energy
components are taken analytically to “track” the local fixed
point or “equilibrium” values. In making this replacement, the
energy and charge conserving features of the full ode system
are lost during the short-lived transients.

Q2: What does the minimal model tell us about the intrinsic limits
of predictability in the MI system?



Lyapunov Exponents and Lyapunov Fractal Dimension

• The largest Lyapunov exponent, designated as LE, determines
the rate of divergence of neighboring trajectories. For a pos-
itive LE the reciprocal is the time for one e-folding in the
distance between neighboring orbits.

This divergence time sets the limit of predictability. For
typical solar wind conditions we will show that the intrinsic
time limit is of order three hours (L−1

E ∼ 3 hr) for moderately
strong solar wind driving voltages.

• Determining all three Lyapunov exponents for the minimal
model also allows us to determine the Lyapunov dimension
(Kaplan and York, 1979) of the chaotic attractor for the system
of DL

∼= 2.1. We compare this finding from a level of 20 kV
(Vsw = 1) to a maximum of approximately 200 kV (Vsw = 10)
with that given earlier for a simple analog model made up of a
Rössler system driving a Lorenz system in Horton et al. (1999)
and Goode et al. (2001).



The WINDMI Substorm Model Equations

The WINDMI dynamical model of the Earth’s magnetosphere
is a set of six first-order ordinary differential equations whose so-
lutions are chaotic for values of the parameter vector P of interest.
Smith et al. (2000) expressed these equations in dimensionless
form as

dI

dt
= a1(Vsw − V ) + a2(V − Vi) (1)

dV

dt
= b1(I − I1)− b2P

1/2 − b3V (2)

dP

dt
= V 2 −K

1/2
‖ P{1 + tanh[d1(I − 1)]}/2 (3)

dK‖
dt

= P 1/2V −K‖ (4)

dI1

dt
= a2(Vsw − V ) + f1(V − Vi) (5)

dVi
dt

= g1I1 − g2Vi − g3I
1/2
1 V

3/2
i (6)



MI System States and Parameters

There are 10 dimensionless parameters to define a parameter
vector P that characterizes the global state of the magnetosphere-
ionosphere system. A system that appears to conform closely
to the known wave forms of the classic internally-triggered
Type I substorms is defined by the following parameter values:
P(S3) = [a1 = 0.247, a2 = 0.391, b1 = 10.8, b2 = 0.0752, b3 =
1.06, d1 = 2200, f1 = 2.47, g1 = 1080, g2 = 4, g3 = 3.79].

General properties of four states S1, S2, S3, S4 are discussed in
Smith et al. (2000).

The bifurcation sequence for the S3 state as the solar wind volt-
age increases from Vsw = 0 to 10 (	 200 kV) is shown in Fig. 1.



Reduction to a Minimal 4D Dynamical Model

A reduced form of these equations results from setting the last
two time derivatives to zero and solving for I1 and Vi, giving

Vi = V + a2(Vsw − V )/f1 (7)

I1 = g2
3V

3
i /2g

2
1 + g2Vi/g1 +

(
g3V

2
i /2g

2
1

) (
4g1g2 + g2

3V
2
i

)1/2
.(8)

The full solution relaxes to these fixed points in the (nonlinear)
R1C1-time scale of 1/[g2 + g3(I1V1)

1/2] which for the S3 state is
short <∼ 10−1. Substituting Eqs. (7) and (8) into Eqs. (1)-(4) yields
the first reduced system.

The reduced 4-dimension system was solved numerically, and
the results are very similar to the full 6-dimensional case, shown
in Fig. 1. Figure 2 shows the largest Lyapunov exponent (base-e)
as a function of Vsw.



Reduction to a Minimal 3D Dynamo Model

From numerical experiments, it turns out that the solutions are
not sensitive to a2, g2, and g3.

Furthermore, Eq. (4) can apparently be eliminated as well, giv-
ing K‖ = P 1/2V , for which chaos still occurs. Finally, the cross-tail
voltage V in Eq. (3) can be replaced with its equilibrium value of
Vsw. Putting in all these simplifications gives the following 3-D
system:

dI

dt
= a1(Vsw − V ) (9)

dV

dt
= b1I − b2P

1/2 − b3V (10)

dP

dt
= V 2

sw − P 5/4V 1/2
sw {1 + tanh[d1(I − 1)]}/2. (11)

A further simplification results from replacing the dimensionless
pressure P in Eq. (11) with its equilibrium value, P = (b1/b2 −
b3Vsw/b2)

2.



Dimensionless Reduced System

Now define new variables,

x = d1(I − 1) (12)

y = a1d1(V − Vsw) (13)

z = a1b2d1P
1/2 + a1d1(b3Vsw − b1) (14)

in terms of which the 3-D system above can be written as

dx

dt
= −y (15)

dy

dt
= c1x− b3y − z (16)

dz

dt
= −c2 − c3 tanh(x) (17)



where

c1 = a1b1,

c2 =
1

4
a1d1(b1 − b3Vsw)3/2(Vsw/b2)

1/2 − a1b
2
2d1V

2
sw/2(b1 − b3Vsw),

and

c3 =
1

4
a1d1(b1 − b3Vsw)3/2(Vsw/b2)

1/2.

The condition that b3Vsw < b1 is that there be a finite part of the
cross-tail current driven by the MHD pressure gradient j×B = ∇p
condition at the point where I hits the critical current Ic.



Properties of the Minimal Model

The system has thus been reduced to one with 6 terms, 4 pa-
rameters, and a single nonlinearity. To verify that the approx-
imations are reasonable, the largest Lyapunov exponent for this
system is plotted versus Vsw in Fig. 3a. Figure 3b shows the Lya-
punov dimension DL and Fig. 3c the bifurcation diagram for the re-
duced system. The dimension in the chaotic regime is only slightly
greater than 2.0 and is consistent with calculations of the correla-
tion dimension.

From the fidelity of the reduced dynamics, we have answered
Q1 and shown that the hyperbolic tangent is the important non-
linearity producing the chaos. The 3-D system has a fixed point
at x∗ = − tanh−1(c2/c3), y

∗ = 0, z∗ = c1x
∗ with eigenvalues λ that

satisfy
λ3 + b3λ

2 + c1λ + c3 − c2
2/c3 = 0.

A Hopf bifurcation occurs at c1b3 = c3− c2
2/c3 followed by a period

doubling route to chaos.



Lyapunov Exponential Fractal Dimension

For this system, the sum of the Lyapunov exponents is −b3.
From the calculated value for the largest exponent and the fact that
one exponent must be zero, the entire spectrum can be obtained for
the above parameters with Vsw = 4.8 as (0.144, 0,−1.204). (The
value Vsw = 4.91 used for Fig. 1 is in a periodic window.)

The Lyapunov dimension is

2 + 0.144/1.204 = 2.12

in rough agreement with the calculated correlation dimension of
2.13.



“Jerk” Systems

The simplification can be carried one step further by reducing
the system to a “jerk” form (Sprott, 2000a):

d3x

dt3
+ b3

d2x

dt2
+ c1

dx

dt
= −c2 − c3 tanh(x) (18)

for a third-order explicit ODE with a scalar variable. This is a
special case of a damped harmonic oscillator driven by a nonlinear
memory term, whose solutions have been studied and are known
to be chaotic. The period of the dominant frequency of oscillation
is 2π/c

1/2
1 = 3.85, corresponding to a real time of about 1 hour.

In Eq. (18), t can be rescaled by c
1/2
1 to eliminate one of the four

coefficients. The dynamical behavior is thus determined by only
three parameters P3 = (b3, c2, c3). The regions of various dynam-
ical behaviors are plotted in the b3 − Vsw plane in Fig. 4 with the
other parameters as listed above.



Reduction to Alternate Minimal Model

For systems that have a strong unloading response above the
critical threshold we can reduce (18) by

1

2

(
1 + tanh(x)

)
	 e2x

d3x

dt3
+ b3

d2x

dt2
+

dx

dt
= c3 − c2 − 2c3 e

2x

or
y′′′ + by′′ + y′ = a− ey

The new canonical equation for loading-unloading problems.



Conclusions

1. A wide class of Physics-Engineering problems reduce to 3 ode’s
describing the storage and release of energy. Substorms and
tearing modes are the two classic plasma physics examples.

2. We find that a detailed 6-energy component system of solar
wind driven, M-I coupled substorm model can be reduced to
a third-order system with two parameters

a = driving strength
b = dissipation strength

while preserving the qualitative features of the state-space or
bifurcation diagram.

3. Many details of the energy transfers and the shorter time tran-
sients are lost in the reduction from 6 odes to 3-odes.
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