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The solutions of about 4 × 10 ~ low-dimensional, low-order polynomial maps and ordinary differential equations were classified 
as either fixed point, limit cycle, chaotic, or unstable. Of those cases for which the solutions are stable, representing candidate 
models for the real world, typically a few percent were found to be chaotic. 

It is now widely understood that complex behav- 
ior in nature may have a simple underlying cause. 
Several examples of  low-dimensional nonlinear maps 
[ 1,2 ] and ordinary differential equations [ 3,4 ] with 
chaotic solutions have been extensively studied. On 
the other hand, many familiar processes are known 
to have regular periodic solutions. It would thus be 
of  interest to quantify the issue of  how common chaos 
is in nature. As a modest first step, this paper quan- 
tifies the occurrence of  chaos in certain simple sys- 
tems of  nonlinear equations that are known to char- 
acterize a wide range o f  natural phenomena. 

Take, for example, the logistic equation [ 1 ], which 
is a simple one-dimensional quadratic map: 

Xn+ I =~LXn( 1 -- X n )  • ( 1 ) 

Upon repeated iteration, the solution will do one of  
four things depending upon the initial condition (Xo) 
and the value o f  it: ( 1 ) it will converge to a stable 
fixed point (a point attractor),  (2)  it will converge 
to a periodic series o f  distinct values (a limit cycle), 
(3)  it will yield a nonperiodic series o f  values within 
some bounded range of  X (a chaotic strange attrac- 
tor) ,  or (4) it will diverge (attract to infinity). For 
this simple case, the stable solutions are all in the 
range o f  - 2  < it < 4, and it is only within this range 
that the logistic equation represents a candidate 
model for a real physical process. We can thus ex- 
amine this restricted range of  it which represents sta- 
ble solutions to see what proport ion of  these are cha- 

otic. In order to do this, the Lyapunov exponent [ 5 ] 

1 N 

# = u,limoo N n~----I log211 --2X,  I (2)  

was calculated versus 2, and the result is shown in 
fig. 1. A positive Lyapunov exponent implies chaos. 
The chaotic regions contain an infinite number  of  
periodic windows, but chaos occurs over 13% of  the 
range. Thus we might infer that for the subset o f  
physical processes for which the logistic equation is 
an adequate model, we would expect chaos to occur 
a similar fraction of  the time. 
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Fig. 1. Lyapunov exponent versus 2 for the logistic map showing 
that the system is chaotic (2>0) over 13% of the stable region 
from -2<2<4.  
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To generalize the above result, it is necessary to 
examine a much wider class of functions [6 ]. Con- 
sider general, D-dimensional, Nth order polynomial 
maps given by 

D 

Xa,.+, =aa+ ~ aa, iXi,n 
i = 1  

D D 

+ ~ Z aa, i,jXg,.Xj,.+ .... (3) 
i = l j = i  

The coefficients aa, ia,. constitute a high-dimensional 
space, some portion of which contains chaotic so- 
lutions. For example, a three-dimensional cubic map 
has sixty coefficients. Since it is impractical to ex- 
amine systematically such a sixty-dimensional space, 
a Monte Carlo technique was employed in which the 
coefficients were chosen randomly and uniformly 
over a hypercube centered on the origin of the space. 
Initial conditions were taken at the origin (Xa, o= 0 
for 1 < d < D ) ,  and the sign of the Lyapunov expo- 
nent was determined for each stable case after allow- 
ing 1000 iterations for the initial transient to 
disappear. 

A practical difficulty is that of determining the ap- 
propriate size for the hypercube. Too small a value 
excludes all the chaotic solutions, and too large a 
value results in nearly all unstable solutions, which 
wastes computer time. Figure 2 shows the fraction of 
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Fig. 2. The fraction of stable solutions within a hypercube of size 
2am.~ centered on the origin (solid circles) and the fraction of 
the stable solutions that are chaotic (open circles) for two- 
dimensional quadratic maps. 

stable solutions and the portion of the stable solu- 
tions that are chaotic versus amax (the maximum ex- 
tent of the hypercube in each dimension) for a col- 
lection of about 107 two-dimensional quadratic maps 
whose coefficients form a twelve-dimensional space. 
The slope of the curve implies that the stable solu- 
tions occupy a (presumably fractal) subspace of di- 
mension 5.6_+ 0.7. It appears to be a general feature 
of all the cases examined that the chaotic subspace 
has a dimension roughly half the dimension of the 
space of coefficients. 

In the limit of large amax where nearly all the stable 
solutions are sampled, the percent that are chaotic is 
asymptotic to a value of 11.10 + 0.36 %. The relative 
estimated error is taken as the reciprocal of the square 
root of the number of chaotic cases. Successive runs 
with different random coefficients confirm that the 
results generally fall within the error bars. It was also 
verified that the results are insensitive to the chosen 
initial conditions. 

The process described above was repeated for maps 
of various dimensions and orders, and the results are 
summarized in table 1. Note that whereas linear maps 
are never chaotic, cubic and higher-order maps are 
slightly less chaotic than are quadratic maps. Fur- 
thermore, there is a strong tendency for higher- 
dimensional maps to be less chaotic than low- 
dimensional maps. Both of these results are surpris- 
ing and counter-intuitive. The chaotic percentage can 
be fit with an average error of about 10% to a power 
law of the form 34.9D-169N-0.28 

Note also that limit cycles occur about a third of 
the time for all cases. The limit cycles were identified 
as those stable cases for which the largest Lyapunov 
exponent is less than 0.005 bits per iteration and suc- 
cessive iterates differ by more than 10 -6. Similar re- 
sults were obtained by looking explicitly for periods 
up to 500; higher periods are relatively rare. In- 
cluded in the limit cycles are a number of quasi- 
periodic solutions (tori) with negative Lyapunov 
exponents. 

Since many processes in nature are better de- 
scribed by systems of ordinary differential equations 
(ODEs) than by difference equations (maps), it is 
of interest to ask how common chaos is in ODEs. The 
simplest ODEs that exhibit chaos are three-dimen- 
sional quadratic systems. The Lorenz and R6ssler 
equations are of this class. Unfortunately, the study 
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Table 1 
The percentage of stable solutions of various types for maps and ordinary differential equations of different dimensions and orders. 

Type Dimension Order Fixed point Limit cycle Chaotic 

map 1 2 38.14_+ 0.88 % 34.97 _+ 0.84 % 26.90_+ 0.74 % 
map 1 3 40.03_+0.87 % 36.21 _+0.83 % 23.76_+0.67 % 
map 1 4 42.44_+0.90 % 35.62_+0.83 % 21.95_+0.65 % 
map 1 5 44.18 _+0.85 % 33.17_+0.73 % 22.65_+0.61% 
map 2 2 50.09_+0.76 % 38.82_+0.66 % 11.10_+0.36 % 
map 2 3 53.93 _+ 0.85 % 36.28 _+ 0.69 % 9.79 _+ 0.36 % 
map 3 2 57.24_+0.59 % 38.19_+0.48 % 4.57_+0.17 % 
map 3 3 59.74_+0.53 % 36.35 _+0.41% 3.91 _+0.14 % 
map 4 2 60.48 _+ 0.44 % 37.22 _+ 0.35 % 2.29 _+ 0.09 % 

ODE 3 2 94.08_+0.33 % 5.54_+0.08 % 0.38_+0.02 % 
ODE 3 3 92.45 _+ 0.44 % 7.09 _+ 0.12 % 0.46 _+ 0.03 % 
ODE 4 2 90.87_+0.53 % 8.46+0.16 % 0.67_+ 0.05 % 

and classification of  large numbers  of  ODEs by nu- 
merical  methods  is computa t iona l ly  demanding.  

The behavior  of  ODEs was assessed by adding a 
term Xa,, to the right hand side of  eq. (3 )  and re- 
ducing amax until  the fraction o f  chaotic solutions no 
longer depends  on a . . . .  The result is a map  whose 
successive i terates are nearly equal and whose be- 
havior  should mimic  the behavior  o f  the correspond- 
ing system of  ODEs. This  procedure  is equivalent  to 
solving the differential equations by the forward Euler 
numerical  method with the largest fixed step size that 
gives statist ically val id  results. Figure 3 shows the 
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Fig. 3. The fraction of  stable solutions within a hypercube of  size 
2an,~ centered on the origin (solid circles) and the fraction of 
the stable solutions that are chaotic (open circles) for three- 
dimensional quadratic ODEs. 

var ia t ion in the fraction of  stable solutions and the 
fraction of  stable solutions that  are chaotic versus 
am~, for three-dimensional  quadrat ic  ODEs. Other  
types are similar.  

Using a value of  amax = 0.01, the results for three 
types of  ODEs were calculated and summar ized  in 
table 1. Note  that  low-dimension,  low-order  ODEs 
are less chaotic than low-dimension,  low-order maps  
but  that  ODEs tend to become more chaotic as the 
d imension  and order  increases, in direct  contrast  to 
the behavior  o f  maps.  For  the three ODE cases con- 
sidered, the chaotic percentage is given to within an 
average error of  about 1% by 0.03D2N °'5. Limit  cycles 

are also relatively less common.  
The above results may contain small systematic 

errors resulting from ambigui ty  in classifying mar-  
ginal cases and uncer ta inty  in the appropr ia te  choice 
for am~, but  the t rends are bel ieved to be significant. 
The extent  to which natural  processes are governed 
by low-dimension,  low-order maps  and ODEs with 
randomly  chosen coefficients is a separate question 
not  addressed in this Letter. However,  a sampling of  
other  maps  involving t r igonometr ic  and other  non- 
l inear functions produce s imilar  results. 

An interesting by-product  of  the study was the 
generat ion o f  about  35000 new examples  of  strange 
attractors which, like snowflakes, are all different and 
most  o f  which are delightfully beautiful.  A statistical 
analysis of  this collection may provide  further in- 
sight into the condi t ions  under  which chaos occurs 
in systems o f  nonl inear  equations.  
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